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Stanford, CAy33().S 

USA 

1. FUNDAMENTALS OF FLUID MOTION 

1.1 Introduction 

This chapter presents a brief review of fluid flow fundamentals pertinent to turbulence. We expect them 
to be familiar to the reader, who may find our particular viewpoints, emphasis, and compact notation helpful 
and interesting. 

We will make extensive use of the cartesian tensor summation convention, where repeated indices imply 
that the terms containing them must be summed over all possible coordinate indices. An overdot () will 
be used denote a partial derivative with respect to time, and a subscript after a comma will denote partial 
differentiation with respect to the indicated coordinate direction; for exahiple. 

P = 
dp 

dt 
PM = "•ii = "1.1 +"2,2 +"3,3 • 

We will also use the isotropic tensors lj,- and «ij» , defined by 

if. = ; 
otherwise. 

and 
(     1   iiijk is from the sequence 123123 

(ijk = S -1    it ijk is from the sequence 321321 
I    0   otherwise 

Various contractions will be used frequently, including 

Sii tjqikp- 

Tensors are entities that, in addition to being an array of elements identified by their subscripts, trans- 
form in a very special way when the coordinate system is transformed by rotation. A tensor that is totally 
unchanged by an arbitrary rotation of the coordinate system is called isotropic. Any second-order isotropic 
tensor must be a scalar times Ä.y, and any third-order isotropic tensor must be a scalar times f,,*. Moreover, 
any higher-order isotropic tensor must be expressible in terms of the various possible combinations of these 
two tensors, and hence they are fundamental building blocks in all sorts of physical modeling, including 
viscous flow and turbulence. 

1.2 The basic equations 

The basic equations are derived by application of basic principles to an elemental control volume (Fig. 
1.2.1). The conservation of mass gives 

f>+{pui).i = 0 (1-2.1) 

where p is the fluid density, and uy is the fluid velocity component in the j,h direction. This is also called 
the continuity equation. 
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Figure 1.2.1 Control volume for basic equation derivation 

The momentum equation ia 
{pui) + (/JUym),, = (7„,y +/, (1.2.2) 

where (r;, is the stress in the «"' direction on a control volume surface perpendicular to the j** axis, and /y 
is the body force (per unit volume) in the ith direction. 

The eoniervation of energy requires that 

{peo) + (puyeo),, = (tfyiUi),, +/.Ui - ?y,y. (1.2.3) 

Here eo = e + %V3 is the total energy per unit mass, where e is the internal energy per unit mass and 
V2 = UiU,', and (jy is the conduction heat flux (flow rate per unit area) in the j"1 direction outward from the 
elemental control volume. The first term on the right represents the power input by the surface forces pet 
unit volume, and the second that by the body forces. 

The entropy balance is 
(p.) + (puy5),y=p-(?y/:r),y (1.2.4) 

where s is the entropy per unit mass, T is the absolute temperature, and <fi is Lie entropy production rate 
per unit volume. Here the term «jy/T represents the entropy flux associated with the heat flux fy. The 
lecond law of thermodynamics requires that the entropy production be non-negative. 

*>>0. (1.2.5) 

These ideas are useful in assessing constitutive models for the stress tensor and heat flux vector, and in 
identifying the processes that produce entropy (dissipate energy) in viscous flows. 

l.S The stress tensor 

The stress tensor a,y must be symmetric. This fact can be established by performing a moment of 
momentum analysis on the elemental control volume of Fig. 1.3.1. The torques of the stress terms are all 
of order dxidx-i, and the moments of the momentum flows and body forces are all of higher order, hence 
"17 = <*n. 

ai2 

\ 
ixt >\  ll 021 

V v1' 
U-^—J 

Figure 1.3.1 Control volume for stress tensor symmetry derivation 

The tensor can be split into two parts: 

(Tiy = -PSij + T,y. (1.3.1) 

The P term represents the Isotropie component of the (inward) normal stress; ry is the deviations from this 
Isotropie stress, attributed phenomenologically to viscosity. From a molecular point of view, a,y arises from 
molecular transport of momentum; the isotropic part P is determined by the average using the probability 
distribution for molecular velocities (e.g. Bolttmann), and ftj arises from anisotropy in the probability 
distribution. 



t 

1.4 Thermodynamic properties and concepts 

The internal energy « reflects the randomly-oriented energy of molecular translation, rotation, vibration, 
and other microscopic energy modes (chemical bonds, etc.). In general, e depends upon the thermodynamic 

| state (i.e. T and />), but for idealised gas and incompressible liquid models depends only on temperature. 
| It is sometimes called the thermal energy, and is all too frequently confused with heat [q,), which is the 
( transport of energy by disordered molecular procasse». The internal energy of an object can be increased by 

a transfer of energy as either heat or work, and the energy flowing as heat can come either from a source of 
internal energy 01 mechanical energy (kinetic, potential, or work). The internal energy is a thermodynamic 
property of matter, the heat transfer is not. The confusion between heat and internal energy is an infortunate 
remnant of the caloric theory of heat, but perhaps understandable since the theory was discarded only about 
a century ago. 

The entropy can be thought of as a measur« of the degree of randomness at the molecular level, and 
in modern thermodynamic treatments the tempei ature is interpreted as a measure of the sensitivity of this 
randomness to changes in energy at constant density. Orderly microscopic exchanges of energy (e.g. as work 
or as bulk kinetic energy) have no associated entropy transport.  But heat, the microscopically disordered 

( transport of energy, does carry entropy with it, and it may be shown that this entropy transfer flux is q^/T. 
] For more discussion of these important thermodynamic concepts from this viewpoint, see Reynolds and 
| Perkins (1977). 

It is usually assumed that as far as the thermodynamic properties are concerned the fluid is in a state 
of local equilibrium, and hence that the usual relations between thermodynamic properties are valid. Thus, 
the Gibba equation is used to relate entropy changes to energy and density changes, 

Tds= ie + Pd(l/p). (1.4,1) 

The enthalpy h is defined as 
h = e + P/p (1.4.2) 

and represents the sum of the convected internal energy and flow work associated with the transport of 
a unit mass of fluid across a control volume boundary. We emphasize that it is the internal energy that 
appears in the basic energy balance equation. 

An alternative form of the energy equation is obtained using (1.3.1) in (1.2.3), moving the pressure term 
to the left hand side; 

(P'o) + (pu,M,j = (rjiUi).j +/iU. - Qj.]- (1.4.3) 

Here h0 = h+ ^V2 is the stagnation enthalpy. Note that the enthalpy appears as the convected energy per 
unit mass (internal energy e plus flow work P/p), but the internal energy e appears in the energy storage 
rate term. A common error is the use of enthalpy in both places. 

1.6 Kinematics of motion 

Any deformation rate Ui,j can be decomposed into the sum of a strain rate 5{j and a rotation rate üij, 

Note that the strain rate is a symmetric tensor and the rotation rate is antisymmetric. They play quite 
different roles in fluid mechanics, particularly in turbulence, and for this reason we prefer forms of the 
equations that make their presence or absence very clear. 

1.6 Mechanical and thermal energy equations 

The fundamental equations may be combined to derive an equation describing the transport of macro- 
scopic mechanical energy and another describing the transport of internal energy. The mechanical energy 
equation is derived by contracting the momentum equation with the velocity; multiplying (1.2.2)j by u;, 

{p\v*) + (pUi-V3)^ = aiUi Ui + /.u.. (1.6,1) 

i ?; 

j 

The right hand side may be written as 
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Then, using (1.3.1) to split the stress tensor and (1.5.1) in place of velocity gradients, and noting that 
"VyOtj = 0 since r,-, it symmetric and fl^y is antisymmetric (sum over both repeated indices is implied), 
(1.6.1) can be rewritten as 

(p\ya) + (p«4^).i = PS,i - (/S).y +/^ + insuiU-inAi)- (1-8.2) 

The sum on the right represents the input of macroscopic mechanical energy to the control volume, 
which shows up as an increase in the kinetic energy of the flow. Two of these terms appear as power inputs 
in the thermal energy equation (1.6.4) but with opposite sign, and hence these terms represent exchanges 
between thermal and mechanical energy. The first is P5yy, which is the rate of energy transfer, per unit 
volume, from thermal energy to mechanical energy due to expansion of the fluid. The second is r,y5^, which 
represents the transfer of mechanical energy to thermal energy by viscous forces. This is the only viscous 
term involved in the entropy production equation (1.7.3), and hence this is the only viscous term properly 
termed disspation. Since 

,(r,yUi),J<i3x = 0 (1.6.3) 
/' 

if the integral it taken over a volume where either the velocity or stress is zero on the boundaries, this viscous 
term has no global effect; it represents reversible viscous power input to the control volume from surrounding 
fluid. The term containing fi is the power input from body forces, and the (Pu,),y term represents power 
output by flow work. 

The thermal energy equation is obtained by subtracting the mechanical energy equation (1.6.2) from 
the total energy equation (1.2.3), and is 

[pe] + (puyO,y = -PSU + (nySiy) - »y,y (1-6.4) 

Here PSjj represents the power output from thermal energy due to expansion of the fluid, UjSij is the power 
input to the thermal energy due to irreversible viscous effects, and q,,, is the net power output due to heat 
conduction, all per unit volume. 

Note that the enthalpy, which appeared in the alternate form of the total energy equation (1.4.3), does 
not appear in the thermal energy equation. We have derived the thermal energy equation correctly from 
(irst principles. One must be wary in reading literature where the thermal energy equation is developed from 
a "heat balance*, because there is no such principle as the conservation of heat. 

1.7 Irreversibility rate equation 

Using the conservation of mass equation (1.2.1) in the Gibbs equation (1.4.1), 

pTDs = pDe + PSa (1.7.1) 

where D denotes the substantial derivative 

*>() = (■) + «,().;■ (1-7.2) 

Using the thermal energy equation (1.6.4) and the entropy balance (1.2.4), this yields an expression for the 
irrevertibiiUy rate, 

rp=-|9yriy+riy5jy>0. (1.7.3) 

This clearly identifies the viscous dissipation term as discussed above, and provides a neat framework for 
evaluation of consitutive models for the heat flux or viscous stresses. 

1.8 Constitutive equations 

The theory of linear algebra is extremely helpful in developing constitutive models for the heat flux and 
viscous stresses, and also for developing turbulence models. We will use these ideas to review the constitutive 
equations so as to set the stage for later use of these ideas in developing turbulence models. 

The most general vector /, that is a function of only one other vector v, is 

fi = Cvi (1.8.1) 

where the coefficient C can be a function of scalars, including the invariant of the vector (its magnitude 
VfcVfc). Higher-order terms, such as m^«*, need not be added since they are represented by allowing the 
coefficient to depend on the invariant of v. Thus, if one assumes that the heat flux vector ft is a function of 
the temperature gradient vector T,i, the most general form is the familiar Fourier heat conduction law. 
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<li°-kT,i (1.8.2) 

where k is the (Aermo/ conductivity, which depends to first approximation on the temperature and may, 
in nttfh«r approximations, also depend on the scalar T,* T,*. It is generally believed that (1.8.2) describes 
heat conduction in fluids, except perhaps in regions of very strong temperature gradient such shock waves 
or combustion fronts. 

The most general tensor ay that is a function of only one other tensor 6,y is, in three dimensions, 

a0 = ASij + Bbij + Cbf, (1.8.3) 

wl'T« bj- = bikikj- The coefficients A, B and C may depend on relevant scalar», including the three scalar 
invariants of th' tensor b. Higher-order terms such as 4fy = 6^6^ need not be added since, by the Cayley- 
Hamilton tin crem, they can be expressed in terms of lower-order terms and the invariants of b and hence 
are already included in (1.8.3). Therefore, if it is assumed that the viscous stress tensor fj| is a function of 
the local strain-rate tensor Sij, this functional dependence must be of the form 

r.y = M, + J950 + C5* (1.8.4) 

where the coefficients may depend on scalars, such as temperature, density, or the invariants of S. This is 
called the Stokes model for viscous stresses. 

The rms strain-rate 5 = (5iy5y,)1'3 is a reciprocal time scale for the fluid deformation. If this time 
is long compared to molecular collision times, then the strain is considered weak and only linear terms in 
(1.8.4) are used. This leads to 

U, = ASij + BStj (1.8.5) 

where A can depend at most linearly on the invariants of S, and B must be independent of S. If it further 
assumed that P = - JCT«, then by (1.3.1) 

Tkk=0 = 3A + BSki, 

so 

A = -jBSkk. (1.8.6) 

For a simple sheaiing flow where the only non-zero strain-rate elements are 

Sli - Sil - 2 3^ 

one defines the fluid viscosity /i by 
r12 = 2/i512 (1.8.7) 

from which, using (18.5), it follows that B = 2ft. The resulting Newtonian constitutive equation is 

2 
r.j = 2/i5iy - -fiS^Sij. (1.8.8) 

Xote that the Newtonian constitutive equation assumes on/y that the viscous stress tensor is a trace-free 
linear function of the local strain rate; this assumption is believed to be quite adequate for many continuum 
fluid flowi. The model foil« in strong shock waves (normal stresses are incorrect) and in flow of polymers 
(rotation rates we also important). 

Using (1.8.2) and (1.8.8) in (1.7.3), the iireversibility rate becomes 

5V = jiT.i T.i +2M(5.;5.y - jS^») > 0. (1.8.9) 

It is clear that the heat flux term is positive-definite. It is left as an exercise to demonstrate that the 
strain-rate term is also positive-definite (Hint: evaluate in the principal coordinates of 5,y by expressing the 
diagonal elements as the components of a vector in polar coordinates). 

1.9 Vorticity 

Vortkity is one of the most fundamental concepts in fluid mechanics, and probably the most important 
concept in turbulence. The vorticity vector u. is defined by 

<*=«;,»"*■/• (1.9.1) 



Note that ();*«*,;< = 0 and hence the vorticity, by definition, is divergence free, 

u)i,i = 0. (1.9.2) 

By the definitions, the vorticity is related to the rotation rate, 

t* = «likfl*,-. (1.9.3) 

Taking cl>4,'X(1.9.3)i , one finds 

n,p = |w«i- (l-9-4) 

The vorticity field can be thought of as contributing to the velocity field. Forming «^x(1.9.1),,,, one 
finds 

or 
Ui,kk =  -tikjU],k +("*,» ),l • (1.9.5) 

This is a Poision equation for the velocity, analogue to the equation for temperature in a heat conducting 
medium with distributed sources. Eqn. (1.9.S) displays two "sources" of velocity, namely vorticity (more 
specifically vorticity jndienU) and flow divergence (expansion or compression). In addition to the velocity 
generated by these sources, one can also have an additional component of velocity satisfying the Laplace 
equation «,,*»= 0. FVom (1.9.5) we see that this component could be thought of as arising from uniform 
vorticity (a solid-body rotation) and uniform irrotational expansion, of which irrotational flow at constant 
density is a special case. 

The part of the velocity field due to the vorticity gradients may be found using the general solution to 
the Poisson equation; at any instant in time, this solution is 

u,(x) = -J G{x,x')€ilciMi,k (x')dV (1.9.6) 

where G(x,x') it the Green's function for the Poisson solution in the flow domain, and d3x' represents an 
element of volume for the interation over the flow domain. The Green's function for an infinite domain is 

C(X,X') = A  n     ~\i      M- (1-9-7) 

Using this Green's function in (1.9.6), and integrating by parts to transfer the k differentiation from the 
vorticity to the Green's function, one finds 

This is called the Bioi-Savart equation. It gives that portion of the velocity field arising from vorticity, for an 
infinite flow domain. Computational methods in which markers track the motion of vorticity-bearing fluid 
use the Biot-Savart equation to compute the velocity field; this is an efficient calculation if the vorticity is 
highly concentrated and most of the fluid has negligible vorticity, and there are many interesting problems 
in turbulence that can be addressed in this manner. 

We emphasize that all of the features of vorticity discussed thus far are kinematic in nature, and apply in 
either compressible or incompressible flows. In the next section we will adress the dynamics of the vorticity. 

1.10 Vorticity dynamics 

Using the continuity equation (1 2.1) and the stress tensor split (1.3.1), the momentum equation (1.2.2) 
can be written as 

"'* + ","*„= -(^.«--P-fc+A)- (1.10.1) 

Taking eyitX (1.10.1) *,; one obtains 

Wi + u,W(„= -«•»•*«,,/u»lg+«y»[-(tfc,„-P>*+/*)]iJ   . 

Using (1.5.1) and (1.9.4), the first term on the right is exactly 
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The pressure term can be expanded into two terms, one of which vanishes, and the vorticity equation becomes 

Ui + u,Ui,j = u/jSij - SjjUi + etjk [(-»*,„),> +-jP,k P<i+{—),}] , (1.10.2) 

Note that the left-hand side of (1.10.2) represents the rate of change of vorticity following a fluid particle. 
Thus, the terms on the right display the processes that can give rise to changes in vorticity of a fluid particle. 
The first term represents the straining of vortex filaments, and is a crucial term in turbulence; in a two- 
dimensional flow, this strain is always in planes perpendicular to the vorticity, and hence there is no vortex 
stretching in two-dimensional flow. The second term shows that fluid compression (5** < 0) tends to amplify 
the voiticity, and expansion to attenuate it. The term containing T^, represents viscous effects, including 
diffusion. The term containing pressure gradients and density gradients shows that these may combine to 
act as a source for vorticity, if these gradient vectors have a non-iero cross product; this term is important 
in the atmosphere. Body force gradients can also generate vorticity; but body forces are often conservative, 
i.e. of the form 

fk = P4>,k (1.10.3) 

where ^ is a scalar potential, and (1.10.2) shows that such forces do not generate vorticity. 
In a Newtonian flow where p = p(t], fi is constant, and /* = p^,*, the vorticity equation becomes 

üi + Uj(jii,j = WjSij - UiSjj + vwi,ij ■ (1.10.4) 

This is the form to which we will refer most often in our studies of turbulence; it emphasizes the interaction 
between strain-rate and vorticity that is so important in turbulence. 

One usually sees the vorticity equation with the first term on the right in (1.10.4) replaced using an 
identity derived from (1.5.1) and (1.9.4), 

wy50=u)Ju,„. (1.10.5) 

We prefer (1.10.4) because it makes the interaction between vorticity and strain-rate very clear. 

1.11 Vortex line» and tube« 

Figure 1.11.1 Velocities along a vortex line 

A vortex line is a line everywhere tangent to the u vector. Along a vortex line (see Figure 1.11.1) 

Vortex lines move as the fluid moves. For inviicid, incomprutihle flow, the vortex lines move with the 
fluid. This fact is extremely helpful in understanding fluid flows in general and turbulence in particular, and 
forms the basis for an important class of numerical methods for simulating turbulent flow. 

We will now prove this important fact about vortex lines. Let ü be the vorticity at the center of an 
elemental segment St of a line marked in the fluid along a vortex line at time t. The rate of change of the 
vorticity following the fluid particle attached to the center of this line given by (1.10.4). Neglecting the 
viscous term, and assuming constant density (so that 5^ — 0), and using (1.10.5), the rate of change of the 
vorticity of this fluid particle is 

üii=üijui,j. (1.11.2) 

The right hand side of (1.11.2) is evaluated at time t using (1.11.1) to express Sxt in terms of 6a, yielding 

wv = M-jj-. (1.11.3) 
(l "■" 

I 
!'■■ 
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Since each end of the line movei with its own velocity, 

«=K. (1.U.4) 

We now examine the changes in Sxi/wi: 

- (Sxi) =   1 'j(fl1)      Sxi 'Ojfi (11151 
dr üi '     üi    dt ü2   dt   ' \ ■   ■ I 

Using (1.11.4) for the first term on the right and (1.11.3) for the second, the right hand side is tero, and 
hence Sxi/Cii is constant in time. The same is true for the other two components. Hence, if the line was 
originally a vortex line, it will remain a vortex line, as we have claimed. Moreover, since Sxi = cDiC, it 
follows that lal will be proportional to the line length. 

We can form a vortex tube from a set of nearby vortex linj». In inviscid, incompressible flow, this 
tube will move with the fluid, and can be stretched by strain along its length. This strain will intensify the 
vorticity in the tube. Since the fluid is incompressible, and the tube is imbedded in the fluid, stretching the 
tube reduces its diameter. The increase in vorticity can be though of in terms of the increased rotational 
rate necessary to maintain conserved angular momentum as the tube decreases in diameter. These processes 
of vortex convection and stretching by the flow are central in turbulence. 

It is left as an exericise to show that, in inviscid, compressible flow, lines everywhere tangent to w/p 
move with the fluid. This fact may be useful in simulations of compressible turbulence. 

3. TURBULENCE EQUATIONS 

2.1 Averaging concepts 

Different kinds of averaging procedures are appropriate for different situations. In situations that are 
statistically steady, the time average is useful. Denoting a random field by /(x,t), its time average is 

/(x)=   lim  i/   /(x,«)*. (2.1.1) 
7 -'oa i Jo 

The time average can not be used in fields that are statistically developing in time. But if the field is 
statistically homogeneous, i.e. statistically the same at all space points, then a volume average can be used, 

'W^F/OVOT'^3*- (212) 

If the field is not statistically steady or homogeneous in space, but is homogeneous on planes or along 
lines, averages on the planes or lines can be used. But if the field is not statistically the same in time or any 
space dimension, one has to resort to the concept of ensemble averaging, i.e. averaging over a large set of 
(usually hypothetical) similiar experiments: 

1    N 

/(x1()=Aflimo-^;/„(x,t). (2.1.3) 
^ n=l 

One must always be careful to choose an averaging concept appropriate to the situation. It will be 
assumed that an averaging process has been chosen that commutes with differentiations with respect to 
both time and space; the ensemble average always has this property. 

2.2 Turbulence decomposition 

Each variable in a random field is represented as the sum of its average and its fluctuation, 

/=/+/'• (2.2,1) 

The averaging processes defined above are all such that 

77 = 0. (2.2.2) 

It follows that   
7h = 7h (2.2.3) 

and ___ 
fh' = 0. (2.2.4) 



In compressible flows, mass-weighted averaging is often employed. The methods for doing this averaging are 
simple extensions of those given above. 

Most turbulence literature concerns incompressible flows. However, there is a class of compressible 
flows that can be handled as a very modest extension of incompressible flows, namely flows where p = p[t) 
(uniform density fiotva). Many practical flows fall in this class, including flow in an internal combustion 
engine cylinder. The equations for uniform density flow are much simpler than those of full compressible 
flow, and so in the interest of simplicity much of what follows will be limited to uniform density flows with 
constant viscosity ft. 

2.3 Governing equations 

If p = p(t), the continuity equation reduces to 

p + pui,i = 0. (2.3.1) 

We will write the turbulence decomposition with capital letters for mean quantities and lower case letters 
for the fluctuations, 

p= P + p' (2.3.2a) 

u. = ^ + uj. (2.3.26) 

Inserting these decompositions into the continuity equation (2.3.1), and averaging, we obtain the mean 
continuity «fuation 

p + pUi.^O. (2.3.3) 

Subtracting this result from (2.3.1) we obtain the fluctuating continuity equation, 

l4..= 0 (2-3.4). 

Note that, for uniform denity flow, the fluctuation velocity field is divergence-free, as would be the mean 
velocity field if the flow were incompressible. 

For uniform density flow with /i =constant and fk = 0, the momentum equation (1.2.2) reduces to 

Ui + tlytl*,, = --p,i +^Uj,yy . (2.3.5) 
P 

Introducing the turbulence decomposition, averaging, and making use of (2.3.4), the mean momentum equa- 
t'on is found as 

Üi + üfUui = --P,. +<'Ui,]j-Rii,j (2.3.6) 
P 

where 
Rij = uju;.. (2.3.7) 

The quantity -pRij appears in (2.3.6) like a stress, and so is called the Reynolds stress after O. Reynolds, 
who intr- luced the basic decomposition. 

Equations (2.3.3) and (2.3.6) would permit calculation of the mean density and velocity field if the 
Reynolds stresses were all known. Since they are not known, we have a closure problem, which can be 
addressed, but not solved, by further development of the equations for the Reynolds stresses. 

An alternative way of thinking about the turbulence 'forces' has some physical appeal. FVom (1.9.1) it 
follows that   

"X = <.*<., «{. (2-3.8) 

Multiplying by c,,,, 

e«<Pwiup = <«<P%*"*>J "{. = (*PA* - W«K.J "{. = K'p K ~ U
'P>I 

u'p- 

Using (2.3.4), this produces 

e9ipU'iU'p = (UiUp).P -ö("X)'« 

or equivalently 

We define 

K<).y=|(">y)»+<.yKui- (2-3-9) 

P'^P+IPS (2.3.10) 

i 
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where the mean square fluctuation velocity is 

92 = t^üj'. (2.3.11) 

It is convenient to denote the mtan-eonvection subitantial derivative by 

^() = () + ^().y- (2-3.12) 

Then, using (2.3.9) in (2.3.6), the mean momentum equation becomes 

DUi = --P',i +vVi,ii -«Ofcüyük- (2-313) 

In this alternative representation the turbulence provides a contribution to the normal stress in P' and a 
turbulent body force, but no shear stress. The potential of this alternative view of turbulence forces remains 
to be investigated. 

2.4.1 Mean vorticity equation 

The turbulence decomposition of the vorticity is 

Wi^tli+u/l (2.4.1) 

The mean strain rate and rotation rate are denoted by 5;y and 0,-j', respectively, and the fluctuation strain 
rate by «[ . By continuity for uniform density flow, s'^ = 0. Introducing the turbulence decomposition into 
(1.10.4), and averaging, the mean vorticity equation is found to be 

DCli = UjSi, - tliSji + vtti.jj -(«;>;.)„ +m'/{i. (2.4.2) 

Note the appearance of the turbulence body force term at^u' in the equation. 

2.5 Turbule.it fluctuation equations 

The fluctuating continuity equation is (2.3.4).   Subtraction of the mean momentum equation (2.3.6) 
from the full equation (2.3.5) gives the fluctuating momentum equation, 

Du'i = -^Ui.j -(uju;. - 4^),, -V,. +^<,ii ■ (2.5.1) 

Subtraction of (2.4.2) from (1.10.4) gives the fluctuating vorticity equation 

-u^n.,,»; - ^x),, +Ks;y - ^r.) + ./«;,„. (2.5.2) 

By taking (2.5.1),, one obtains an equation for the fluctuating pressure, 

-p'm = -2U;,, U^ -(uj.y u'^i -uj„ u;,.) (2.5.3) 

These equations are useful for deriving equations relating statistical properties of the turbulence and in the 
study of the dynamics of turbulent fluctuations. 

2.6 Kinetic energy equations 

The transport equation for the turbulent kinetic energy 

\q* = i^X (2.6.1) 

is derived by multiplying (2.5.1)^ by u[ and averaging. After some rearranging, one obtains 

D(\q') = P-[>-J„i. (2.6.2) 

Here 
P = -^Si, (2.6.3) 
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u the rate of turbulent energy production,   

ia the (komogeneotu) rate of turbulent energy dissipation, and 

1-r-r     1- 
J> = pp'u5+ iu>u!u! ~ '/(2,a)" (2-6-5) 

is the turbulent kinetie eneryy flux in the y"1 direction. 
Note that P involves the product of turbulent stresses and mean struin rates, and that the mean 

rotation rate does not appear explicitly in the turbulent kinetic energy equation (though it may influence 
the turbulent kinetic energy by altering terms in the equation). P arises from the stretching of the tangle 
of vortex filaments that make ip the turbulence by the mean deformation. P is almost always found to be 
positive, although there are situations in which it is negative. 

Since th«> source of turbulent kinetic energy is the mean flow, the production term should appear 
with opposite sign in the evolution equation of the mean kinetic energy. Multiplying (2.3.6), by Ui, and 
rearranging, the mean kinetic energy equation is 

D^UiUi) = -{-PUiU^-PSu - tvSvSij + 2w{UiSij),i -P - (t/i^X),, (2.6.6) 
2 p p 

Indeed, —P does appear on the right, indicating a drain from the mean kinetic energy. The two pressure 
terms represent the power associated with flow work and the power transfer from internal energy due to 
expansion of the flow. The first viscous term is the rate of dissipation of mean kinetic energy by viscous 
effects (see 1.8.9), and the second is the reversible viscous power transfer. The last term, which integrates 
to sero over a large volume of flow bounded by non-turbulent fluid, represents an internally conservative 
transfer of mean kinetic energy within this volume. 

We have been careful to call P the homogeneous dissipation, because (as shown in the next chapter) 
only in homogeneous turbulence does it represent the true rate of energy dissipation. FVom (1.8.9) the true 
dissipation rate is ___                  

e = ^j.ä;.y = 2^;.^ = ^;,, («;,,+«;,(). (2.6.7) 

The right hand side of the turbulent kinetic energy equation can be modified to replace P by c, with a 
concurrent modification in the definition of the flux. This is left as an exercise. 

2.7 Reynolds stresa evolution equation 

The evolution equation for Ri,- is derived by multiplying the i,h fluctuation momentum equation by u' 
and the j*1* equation by uj, adding the resulting equations, and averaging. The result may be written as 

TSRij = Pa + O., + Tu - Ay - Jiik* ■ (2.7.1) 

Here the production term 
Pi, = -{BikSk, + RjkSki) (2.7.2) 

is the source of Reynolds stress; note that its trace is 

Pa = 2P. (2.7.3) 

The kinematic rotation term 
Ou = RikUkj + Riktlu (2.7.4) 

is trace free (O,,- = 0) and hence this term does not contribute to production of new turbulence energy, but 
simply rotates the turbulence structure. The pressure strain term 

1- 
To =+-P'(u;„+«;.,.) (2.7.5) 

is also trace-free and provides intercomponent energy transfer. The dissipation term 

A, = 2l/uS •*»>■* (2-7-6) 

C has a trace 
I Dij = 2D. (2.7.7) 
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Finally, the fiui of fi^y in the kth direction is 

•*,» = -ttv'Sik + PX«,-*) + u'y^ - vR,j,k . (2.7.8) 

<r').. (2.8.2) 

3. STATISTICAL DESCRIPTIONS OF HOMOGENEOUS TURBULENCE 

3.1 Introduction 

A field in which all statistical properties are independent of position is called homogeneous. If the 
statistical properties are independent of the orientation of the coordinate frame, the field is called isotropic. 
Turbulence may be approximated as homogeneous and/or isotropic, although turbulence is usually homo- 
geneous if it is isotropic. Few practical flows are either homogeneous or isotropic. Nevertheless, regions of 
practical flows often are essentially homogeneous, and homogeneous flows provide a very important point of 
departure for models and theories of turbulence. Therefore, development of good understanding of homoge- 
neous turbulence is an important first step in the study of turbulence. 

In order for the turbulence to be homogeneous, the terms in the equations for statistical properties 
of turbulence must be independent of position. Since the production term (2.7.2) involves mean velocity 
gradients, these must be independent of position if homogeneity is to be achieved. Therefore, a necessary 
condition for homogeneity is that the mean velocity be a linear function of the coordinates. Since there are 
no Reynolds stress gradients in homogeneous turbulence, the mean momentum equation (2.3.6) shows that 
the mean velocity field is unaffected by the turbulence. 

Since the mean field is decoupled from the turbulence in homogeneous turbulence, almost any mean 
velocity history can be imposed on homogeneous turbulence. Any mean strain-rate history can be imposed, 
but the mean rotation history is determined by the imposed strain-rate history. From (1.10.5) it follows that 
the last term on the right in the mean vorticity equation (2.4.2) is (w'uj),/ which vanishes in homogeneous 
turbulence.  Hence, the mean vorticity equation in homogeneous turbulence is 

Üi = UjSij - iliSjj. (3.1.1) 

Thus, while an initial arbitrary mean rotation can be imposed, any subsequent changes in the mean rotation 
are governed by (3.1.1). This restriction is important in the analysis and simulation of turbulence distortion 
by mean strain and rotation. 

The statistics of homogeneous turbulence will depend upon time. Experiments on homogeneous tur- 
bulence generally involve passing flow through a grid, which generates turbulence, and then through a flow 
passage of varying cross section. The flow is approximately homogeneous as seen by an observer moving 
downstream with the mean flow, and the evolution of this turbulence as seen by the observer is interpreted 
as the time evolution of the turbulence. The behavior of turbulence under imposed mean strain can be 
studied by changing the cross-sectional geometry of the flow channel. Ingeneous experiments permit great 
flexibility in such experiments (Gence and Mathieu 1980).   Homogeneous shear flow, in which the mean 

Again we have used the mean strain-rate and rotation-rate instead of just the mean velocity gradients 
to bring out the different roles played by strain and rotation. Most previous workers have included the mean 
rotation term in with the production. But it is trace-free it does not add new energy (it is absent from the 
turbulent kinetic energy equation), and therefore is different than production. The rotation term provides 
exactly the changes that would be seen if the Hi, structure were to be rotated a» a solid body without 
change. Only strain, acting on the Reynolds stresses, can act as a new source for additional Reynolds stress. 

The Rij equation is sometimes rewritten so that the trace of the dissipation term is 2c instead of 2D. 
with an associated modification in the flux. This is left as an exercise. 

The Rij evolution equation forms the basis for many of the current types of turbulence models. It is 
very useful in exploring the general nature of the changes that occur in turbulent flows subjected to strain. 

2.8 Vorticity equation 

The mean-square turbulent vorticity, sometimes called the enstrophy, is sn important quantity in tur- 
bulence. Its evolution equation, derived by multiplying (2.5.2); by wj and averaging, is useful in studying 
the small scales of turbulence. Denoting 

w2 = üX (28.1) 

one finds 

D(L2) = ^y.s^ - w
2s„ - ^n.,, +fixx 
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streamwiae velocity gradient ii uniform across the flow, can be produced using upstream grids of special 
geometry (Tavoularis and Corrsin 1981). 

Grid turbulence is not quite isotropic. However, by placing a contraction in the flow stream downstream 
of the grid, essentially isotropic turbulence can be obtained (Comte-Bellot and Corrsin 1966) for study in 
a subsequent constant cross-section duct downstream. One can also study the relaxation of homogeneous 
turbulence afUr strain in such a duct. 

In the period 1960-1980, a number of basic experiments on homogeneous turbulence provided a sound 
data base on these flows. Since then numerical simulations of homogeneous turbulence have added consid- 
erably to this data base. The insight gleaned from these experiment and simulations now allow us to paint 
a useful picture of the structure of homogeneous turbulence. The next section presents this piciu^e and 
discusses the important scales of turbulent motion. 

3.2 Structure and scales in homogeneous turbulence 

One can think of homogeneous turbulence as a complex tangle of vortex filaments, each acting as a 
'Biot-Savart source' in moving, distorting, and and straining all the filaments (F:g.3.2.1). This continual 
vortex stretching concentrates the vorticity, and so the volume of vortical fluid tends to be a small fraction of 
the total. Vortex filaments of the same sign tend to collect, and this provides a mechanism for the creation 
of larger eddies. This is counterbalanced by the three-dimensional straining of filaments, which tend to 
twist and tangle themselves to produce smaller eddies. The imposition of mean strain distort the tangle of 
vortex filaments, much as the fibres in a ball of steel-wool are distored when it is stretched. This alters the 
structure of the filaments, and hence the structure of the turbulence. Upon removal of the mean strain-rate, 
interactions between filaments randomize their orientation, bring about a return to isotropy. 

This tangle of vorticity produces a very broad range of turbulent motions. The larger scales are more 
efficient in generating the Reynolds stress required to extranet energy from the mean field flow, and and 
new turbulent energy appears initially at large scales. Through the complex non-linear interactions, which 
are inviacid processes, turbulence energy is cascaded successively to smaller and smaller eddies, ultimately 
to be dissipated by viscous straining in the smallest eddies, where the local strain rates are the greatest. 

P#^ 
Figure 3.2.1 Homogeneous turbulence as a tangle of vortex filaments 

The scale of the largest eddies is set by whatever object produced them. In grid turbulence the grid 
mesh determines the largest eddies, in wakes the large eddies scale on the diameter of the object, and in 
pipes they scale on the pipe diameter. The scale of the smallest eddies is set by the rate at which they must 
dissipate energy, provided to them by the large eddies through the cascade, through viscous stresses. The 
role of viscosity in turbulence is to set the scale of the smallest eddies. 

These ideas suggest that the dissipation rate is determined by the scale of the energetic large-scale 
turbulence which starts the energy cascade. If we assume chat q2 and e characterize these large scales, then 
by dimensional analysis the length scale of these eddies is 

and the time scale is 

t=q
3/e 

■ = «V« 

(3.2.lo) 

(3.2.16) 

The velocity Kale is of course just g. These scales tell us how the statistical properties of large eddies should 
be non-dimension allied to collapse data from similar flows at different scales. 

The Reynolds number of the turbulence, defined in terms of the velocity and length scales for the large 
eddies, is 

RT ~ —. (3.2.2) 

In practical flows, q is generally proportional to the velocity difference driving the flow (velocity at the center 
of a pipe or the velocity defect in a wake), and I is proportional to the object dimension. Thus, RT is usually 
proportional to (but smaller than by a factor of 20-100) the flow Reynolds number. 

(r 
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The scales of the smallest eddies are determined by the e and v.  By dimensional analysis, the length 
scale must be 

tK = (*3A)'/4 (3.2.3a) 

and the time scale 
Of = ("It)1'2- (3.2.36) 

These Kolmogorov scales characterize the vortex filaments in turbulence, with the cores of the vortex being 
of order IK and rotation time for the core scaling on TK- The corresponding velocity scale, characterizing 
the velocity difference developed locally around a vortex filament, is 

vK = (ueyl\ (3.2.3c) 

Using these scales, the ratio of the largest scales to the smallest scales is 

(3.2.4) 

Thus, the range of turbulence eddies broadens as the Reynolds number increases. This wide range limits 
direct numerical simulations of turbulence to low Reynolds numbers. Large eddy j«mu/alionj of turbulence, 
in which turbulence of smaller scale than the computational mesh is modeled and the larger scales are 
computed, depends heavily on models for the small scales. It is tempting to approximate this sub-grid scale 
turbulence as homogeneous, and therefore a firm understanding of homogeneous turbulence is important to 
progress in large eddy simulation. 

The remainder of this chapter is devoted to the mathematics used to describe the statistical properties of 
homogeneous turbulence. Subsequent chapters deal with the dynamic evolution of these statistical properties 
in response to imposed mean strain. 

3.3 Correlations and spectra 

The statistical properties of homogeneous random fields are most often described in terms of correlations 
and spectra, for example, if / and g are two random field variables, the two-point correlation of / and g is 
defined as   

Q/f,(x,x',0=</(x,()?(x',0 > (3.3.1a) 

where the overline denotes a volume average and the brickets denote an ensemble average. Ensemble and 
volume averages are usually assumed to be the same lor homogeneous fields (ergodic hypothesis); the dual 
averaging is therefore redundant but useful in the analysis that follows. 

For homogeneous fields Q/,, depends only on the separation of the two points r = (x' — x) and t, 

QJil{T,t)=<f(x,t)g{x + T,t)>. (3.3.16) 

Often the time dependence of the correlation is not expressed explicitly, but it must not be forgotten. 
There is an infinite set of other correlations of possible irterest, for example the two-point correlation 

with time delay, three-point correlations, etc. A complete statistical description requires knowledge of the 
probability density function for all variables of interest at all space points and time, ar. impossible goal to 
achieve. Therefore, statistical descriptions are always limited in what they can provide, and the challengs is 
to provide what is really essential, with minimum effort and maximum accuracy. 

In homogeneous fields, Fourier expansions can be used to represent individual realizations of the fields. 
Suppose that / and g are defined within a box of interest (Fig. 3 3.1). In order to give them Fouriei 
expansions we have to imagine that they are periodic functions, so let 

/(x)={/M inside the box 
periodic repetition outside. 

The Fourier representation of / at any instant of time is 

/(x) = ^/»-'•■" (3.3 2a) 
k' 

where k = (^i, A;2, A^) is the three-dimensional wavenumber vector, and k   x = knxn.   Since the Fourier 
modes must fit into the box with integer periods, 

ki = 2irni/L. (3.3.26) 

The summation is a triple sum over all Fourier modes. 



1-15 

oo    oo    oo 

k'        kt    k,   k. 

Note that the Fourier coefficients may vary with time; we do not show this explicitly here. 

(3.3.2.:) 

ij 

ii 

Figure 3.3.1 Box for Fourier representation 

There is an important relationship between the Fourier coefficients of positive and negative wavenumbera 
for a real field. Taking the complex conjugate of (3.3.2a), replacing k' by k", 

f'{*) = ,£f'(*")<+ik"x 

k" 

where the * denotes a complex conjugate. Letting k" = -k', 

/•w = E/*(-kV,Vx- (3-3-3) 
k' 

Now, if / is real it is equal to its complex conjugate. Equating the Fourier coefficients of like exponentials 
in (3.3.2a) and(3.3.2), 

/>') = /• HO 
or al' ernatively (for r«a/ /) 

/(-k) = /-(k). (3.3.4) 

The Fourier coefficients are evaluated using the orthogonality property of the Fourier modes, using 
integrals over the domain. In what follows J()d3x denotes an integral over the box in Fig. 3.3.1. Then, 
multiplying (3.3.2a) by e       and integrating over the box. 

/ e'k-/(xj^x = £ />') / e
,(k-k''"^x. 

J v J 

Since each Fourier mode that fits the box contains an integer number of cycles, 

/" e.(k-k') xjs,. _ f 0      ifk/k' 
/ li3    ifk = k'. 

(3.3.5) 

(3.3.6) 

Hence all terms in the summation of (3.3.4) drop out except for the one where k' = k. Thus, the Fourier 
coefficients can be evaluated as 

(3.3.7) /(k) = ^//(x)e*,"[d3x. 

The two-point correlation of / and g can be expressed in terms of the Fourier representations. Consider 
the correlation of / and g within the box of Fig. (3.3.1), 

< /(x)g(x') >= EE < /(k)9(k') > «-(kx+,''V). 

The brackets indicate that the Fourier coefficients are random variables that will differ from from realisation 
to realisation. Let k" = ~V and r = x' - x. Then, using (3.3.4), 

< /(x)9(x + r) >= EE < /OOnk") > e-'''(
k-k")+'k" '. (3.3.8) 

Now we average by integrating over the box and dividing by L3, denoting this average by an overline. Using 
(3.3.6), all the terms in the sum drop out except the terms where k" = k. The result is then 



Qla(r) =< /(x)s(x + r) >= X; < fWW > '""■ (3.3.9) 
k 

In computational aimuhtions in which the evolution of the Fourier coefficients is calculated for finite-series 
approximations to the fields, (3.3.9) is used to calculate the the two-point correlation. 

Theoretical treatments take the limit a» L —» oo, in which case the sums become integrals. To pass to 
this limit, we note that the difference between consecutive wavenumhers in the summation is Aka = 2ir/I 
for each direction, so Afc,L/2)r = 1. We can multiply each term in the summation by unity three times to 
obtain 

Q/A') "= £ < /Ws'OO > (£) Afci^Afcae*"-. (3.3.10) 

We define the cospectrum of / and g as 

^»(k)=(d)   </(k)5*(k)>- (3-3ll) 

This is the equation used to calculate the co-spectrum in discrete spectral simulations of random fields. 
Then, 

Q/Ar) = E ^/B00«ik -Afcj AfcjAA*. (3.3.12) 
k 

Taking the limit as L -♦ oo, we define the cospectrum of / and g by 

£/(,(k) = ^m tf/jfk). (3.3.13) 

Ejs does not become infinite as Z. —» oo because the Fourier coefficients of individual modes become very 
small as the number of significant modes increases. As £ —» oo, AfcjAfcjAfca becomes an elemental volume 
in wavenumber space d/t! dfcj dfca = d'k. Therefore, in (3.3.12) the two-point correlation 

Q,Ar) = Hm Q/^r) (3.3.14) 
x—*oo 

becomes the threc-dimensionol Fourier transform of the cospectrum, 

Qta[*) = j E,,(*)'**d3*. (3.3.15) 

Here the triple integration is to be carried out over all wavenumbers. 
There is an inverse of the transform (3.3.15). Multiplying (3.3.9) by e~,k r and integrating over a box 

of size i in r space, 

JQlg(r)riV'rd\ = E/ < /»s'W > e,^""k', (3316) 

Each exponential in the summation will execute an integer number of cycles in each direction and hence 
integrate to zero, except for the term where k = k'. Hence, 

/' 
Q/(,(r)e-

k rd3T = L3< /(k)9,(k) >= fafEfeW. (3,3.17) 

In computational simulations based on finite-difference methods, this equation is used to calculate the cospec- 
trum from the two-point correlation. Taking the limit as i -» oo, and replacing k' by k, 

Ef'W=[±)  fQ/A*)'-*'*3'- (33.18) 

Note thüt E/n and Qjg are Fourier tranform pairs. 
We could have obtained the cospectrum simply by Fourier transformation of the two-point correlation. 

We started with a finite box so that the relationships between the Fourier coefficients and the cospectrum 
would be made clear, and also to derive results useful to persons engaged in discrete-representation simula- 
tions of homogeneous turbulence in finite computational domains. It should be understood that the Fourier 
transforms of / and g defined over an infinite region do not exist. However, because events at distant 
separations are uncorrelated, Qf^ —> 0 as |r| —> oo, and hence the Fourier transform of Q/g does exist. 
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S.4 Velocity correlations and spectra 

The velocity field in homogeneous turbulence can be represented in the terms outlined above. Let / 
Ui and g = uy. Then, dropping the redundant ensemble average, 

<?..>(r) = u;(x)u;.(x + r). (3.4.1) 

Qij is the two-point velocity correlation tensor. Note that 

<?..(0) = u;(x)U;(x) = ,3. (3.4.2) 

Qij(r) expresses the average relationship between two velocity components measured at two locations 
separated by a distance x. Qaa (repeated Greek indices are not summed) will be largest for zero separation, 
fall to a fraction of this value for separations comparable with the large eddies in the turbulence, and become 
lero for infinite separation. If the eddies tend to be long in one direction and short in another, this will 
be reflected in the different rate at which the correlation falls off with different ra. Thus, the two-point 
correlation tensor can tell one quite a bit about the structure of the turbulence. 

Using (3.3.18), the velocity spectrum tensor k 

^(k)=(Ä)7Q,j(r)e'ikrd3r (3-4-3) 

where the integrations are over all r. It is related to the two-point velocity correlation tensor by (3.3.15), 

Qv{r)= /'ly(kyk'<i3k (3.4.4) 

where the integrations are over all k. 
The Reynolds stresses Ri, = uju' are given by 

Rij = QiAO) {3-4.5) 

for which (3.4.4) gives 

fi^ l&yW^k. (3.4.6) 

Reviewing the developments of the previous section, one sees that £'iy(k)d3k represents the contributions to 
Rij coming from an element of k space of volume d'k positioned at k. 

For uniform density flow, the continuity equation (2.3.4) provides important constraints on Qiy(r). FVom 
(3.4.1)   

^ii = u;(xK.(x + r),y = 0. (3.4.7a) 

Replacing x by x' -r in (3.4.1), then differentiating with respect to c,-, (2.3.4) also requires that 

i£f=o. vm 
The continuity equation (2.3.4) also constrains £,y.   In terms of the Fourier expansion, continuity 

requires 
-^:ifcyoy(k)«-'kx = 0. (3.4.8) 

k 

This must hold for all x, which requires that the coefficient of each and every exponential must vanish. 
Hence, for each wavenumber vector k, 

fcyüy(k) = 0. (3.4.9) 

Equation (3.4.9) is the continuity equation in Fourier form. It says that, for each k, the Fourier coefficient 
vector ü must be orthogonal to k in order for the velocity field to be divergence-free. This condition is used 
very often in analysis and simulation of homogeneous turbulence. 'Prom (3.4.9), it follows (most obviously 
using the the discrete Fourier representations) that 

\ kiEij = 0 (3.4.10a) 
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and 
kjEti = 0. (3.4.106) 

The correlation tensor Qi, has an important symmetry property. Noting that 

QVj(-r)-U;(x)u;.(x-r) 

we let x = x' + r and rewrite this as 

Qiy(-r) = U;.(x' + r)U;.(x'). 

The right hand side is just Q>,(r). Hence 

Qvy(-r) = <?,.(')• (3411) 

The spectrum tensor Eij also has a symmetry property. Since the Fourier coefficients for real fields 
obey (3.3.3), It follows (most obviously from the discrete Fourier ropresentations) that 

fi'("k) = (£)    < "•(-k)fiJ(-k) > 

= (^)   <Ü-(k)ÜJ(k)>=£Jv(k). (3.4.12) 

In the limit L —♦ oo this becomes 
^■(-k) = ^(k). (3.4.13) 

The turbulence kinetic energy may be expressed as 

^2 = iQ..(0) = i/^(k)d3k. (3.4.14) 

Integral scalet of motion may be defined in terms of Qij. For example, 

011(0,0,0) v ' 

is useful as a measure of the ii scale of the turbulence. Here the arguments display the three components 
of the separation vector, 

Qij and £,/ are the classical quantities used to describe homogeneous turbulence. They are less use- 
ful for inhomogeneous turbulence because expansion functions other than Fourier modes really should be 

used in directions of inhomogeneity. They are used for inhomogeneous flows when the turbulence can be 
approximated as locally homogeneous over regions large compared to the integral scale. 

3.5 Other statistical quantities 

There are many other statistical quantities of interest in turbulence. Those that involve only quadratic 
forms in the velocity are termed itcond-order. Any second-order statistical property of the velocity field can 
be derived from the two-point correlation tensor or the velocity spectrum tensor. For example, a tensor of 
interest is 

%M = <.Pui.?- (35.1) 

Fl-om (3.4.1), 

%^ = U;(x)u;„(x + r). (3.5.2) 
or. 

Replacing x by x' - r in (i 5.2), then differentiating with respect to rp, one has 

^^ - -U;,p(x'-r)u;„(x'). (3.5.3) arpr, 

Now letting 1 = 0, 

\ drpdU / i,i=o 
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The corresponding result in terms of the spectrum tensor can be derived directly by taking the derivatives 
of the discrete Fourier series for the velocities, and proceding as in section 3.2 above, or by applying (3.5.4) 
to (3.4.4). Either approach gives 

A,w = / kplcEijCk)*3*. (3.5.5) 

Since gradients of all statistical quantities vanish in homogeneous turbulence, 

K«y)»y=0. (3.5.6) 

Expanding the differentiation using the continuity equation (2.3.4), 

Dijii = u[,ju,.,i=0. (3.5 7) 

Note that this is consistent with (3.5.4) and (3.5.5) if the continuity constraints (3.4.7) or (3.4.10) are applied. 
The dissipation rate e may be expressed in general as 

e = "(Duj-j + Dijjt). (3.5.8) 

FVom (3.5.7), the second term does not contribute, and in homogeneous turbulence the true dissipation rate 
e is the same as the homogeneous dissipation rate P defined by (2.6.4). 

Using (3.5.8), (3.5.7), and (3.5.5), we find that the dissipation rate is related to the velocity spectrum 
tensor by 

t = v f PEaWePk. (3.5.9) 

The factor k2 means that the main contributions to the dissipation come from higher wavenumbers (smaller 
eddies) than those that provide the major contribution to the kinetic energy. 

8.6 Vorticity 

The two-point vorticity correlation tensor is 

W0(r)=w.'(x)w;(x + r). (3.6.1) 

Note that _ 
Wi.(0)=W>;=W

a. (3.6.2) 

FVom the definition of vorticity (1.9.1), 
w2 = Dujj - Dan (3.6.3) 

so it follows from (3.5.7) and (3.5.8) that in homogeneous turbulence the dissipation is directly related to 
the mean-square vorticity, 

e = vui2. (3.6.4) 

The enstrophy equation (2.8.1) is therefore sometimes used as a guide in developing model equations for the 
dissipation. 

The vorticity can also be expanded in a Fourier representation; for the box of section 3.2, 

üi.'(x) = £>.(k)e-""' (3.6.5) 
k 

Because the vorticity is by definition divergence-free, 

ifc,(0i(k)=0 (3.6.6) 

and because the vorticity is real 
(Oi(k)=<0*(-k). (3.6.7) 

The vorticity tpectrum tensor H,,(k) can be developed following the approach above. It is of course 
the Fourier transform of the two-point vorticity correlation tensor, and can be related to the velocity tensor. 
Because the vorticity is divergence-free, 

kiHii(V)=0 (3.6.8o) 

and 
A^yfk) = 0 (3.6.8(.) 
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and because it is real 
//0(-k) = i/;,(k). 

The Fourier coefficients of the vorticity are related to those of the velocity. Using (1.9.1), 

^(x) = E^(-^)ö'(k)e"""'- 

Equating coefficients of like exponentials, the vorticity coefficients are found to be 

üiW = -»*pf.p<iMk)- 

From this it follows that 
ffy(k) = eiptffjr.fcpfcr^d'OO 

One can express Q^ in terms of the vorticity correlation tensor and £,, in terms of the vorticity spectrum 
tensor. This requires the solution of the Poisson equation (1.9.5), which is easily accomplished using the 
Fourier representations. Alternatively, one can multiply (3.6.10) by fr„t,. The result is 

(3.6.9) 

(3.6.10) 

(3.6.11) 

(3.6.12) 

"i(k) = £.p,^w,(k)- 

where k2 = kiki. Substituting in the discrete representation of £,, and taking the limit, one finds 

EiiO*) = £ip»fj>.-74--ff,.(k). 

(3.6.13) 

(3.6.14) 

This result finds important use in rapid distortion theory, where it is used to estimate the anisotropy in the 
Reynolds stresses produced by distortion of the vorticity field due to imposed mean strain. It is also useful 
in constructing models of Eij for anisotropic turbulence using models for the anisotropic Hij. 

3.7 Correlations and spectra in Isotropie turbulence 

If the statistics are independent of the coordinate system orientation, only two types of correlations 
completely characterize the velocity correlation tensor (Fig. 3.7.1). The longitudinal correlation function 

/(••) =-5<2u(ri,0,0) (3.7.1) 

describes the coherence of the velocity fluctuations aligned with the separation of the two points. The lateral 
correlation function 

S(r) = 4,322(r1,0,0) (3.7.2) 

relates to the coherence of fluctuation velocities perpendicular to the separation axis. 

u'Jx') 

Figure 3.7.1 Longitudinal and lateral correlation functions 

The complete tensor Qij{r) can expressed in terms of these two scalar functions. The tensor must be a 
function of the separation vector r. The most general such function is 

<?.,(>■) = c'i^y + <V.'V (3.7.3) 

where the coefficients Cj and Cj may be functions of the scalar invariant of the vector, r = y/uri.   The 
coefficients can be identified by expressing the longitudinal and lateral correlations: 

Q32(r,10,0) = i-9(r) = C1 (3.7.4) 
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Qu(r1,0,0) = 1-/(0=0,+C3r
J. 

Solving for C, and Cj, one finds 

Qy(r) = 
f{r)-g{r) TiTj + ylr)^, 

(3.7.5) 

(3.7.6) 

Note that / and g are scalar functions of the scalar separation magnitude r (and of time, not shown explicitly). 
The continuity equation provides a relationship between / and g. Since r = \/riri, 

ark       r 

Differentiating (3.7.6) with repect to r^, 

Qv* = 9j [(^)^ 7 + (^) M* + rt.*ik) + ^ 

(3.7.6) 

(3.7.8) 

where the primes denotes differentiation with respect to r.  Setting k — ] and using the continuity condi- 
tion(3.4.7), one finds 

/'+r(/-s) = 0 (3-7-9) 
This integrates readily to give 

r   Jo 
(3.7.10) 

Eij for Isotropie turbulence can be obtained by Fourier transform of Q,, as outlined in section 3.3. 
Alternatively, we can construct its general form directly since, for isotropic turbulence the Eij tensor must 
be a function only the vector k. The most general form is 

^,(k) = dki + Cikikj (3.7.11) 

where the coefficients can depend on the scalar invariant of the vector, k = ^(fc,fc,).  Using the continuity 
condition (3.4.10), 

dikj+C2A;2Jty = 0 (3.7.12) 

hence 

Redefining Ci as iirk'iE{k), we have 

EiiW = 

C2 = -Ci/k2 

m 

(3.7.13) 

4jrJta {'■'-%} (3.7.14) 

E(k] is called the energy spectrum function. Note that it is a scalar function of the scalar it (and of time, 
not shown explicitly). 

fc2 

*»>  k. 

Figure 3.7.2 Coordinate system for fc-space integration 

The turbulence energy is, using (3.4.14), 

h2 = l^k^ (3.7.15) 

The integration of integrals of this type , in which the unknown function depends only on the magnitude of 
the vector, can best be carried out in spherical coordinates (Fig. 3.7.2). We have 
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1 3       1   f00   f    f1' Elk]  , 

Carrying out the integrations over ^ and 6, 

i?2=y"00 £{*)*. 

(3.7.16) 

(3.7.17) 

We see that E(k)dk represents the contribution to the kinetic energy per unit mass arising from all the 
Fourier modes in a spherical shell in k-space of radius k and thickness dk. Once E(k) is known, the entire 
velocity spectrum tensor £,, is known from (3.7.14). 

In theory, homogeneous isotropic turbulence evolves in time, and one should measure the spectrum 
tensor by making measurements at many space points. In reality this is very difficult (but it is what is 
in fact done in a numerical simulation). Instead, laboratory experiments make use of Taylor's hypothesis, 
which assumes that the velocity pattern measured as a function of time at one point is frozen in the fluid 
and being swept over the probe. The probe measurement is thereby interpreted as providing Qii{ri,0,0). 
Using (3.7.14) in (3.4.4), 

Qu(ri|0l0) = /Si(1"§)e"C'r'<i3k (3-718) 

This integration is conveniently carried out in the coordinates of Fig. 3.7.3. We sort the Fourier contributions 
according to those with the same wavenumber \ki\. Terms from both sides of the ky axis contribute, with 
opposite signs in their exponentials; these are combined into a cosine; 

<?u(ri,0,0) =  r     r     j' M(l- M^costVilWM^i 

and define the one dimensional spec We carrying out the <l> integration, and define the one dimensional spectrum function E^ by 

t2x 

Then, 

Qll(n ,o,o)= r 
Jki=0 

Ei{k) cos(/ciri)(ffci 

(3.7.19) 

(3.7.20) 

(3.7.21) 

One can taking the Fourier cosine transformation of the measured Qu(ri,0,0) to get Ei(ki).   Then, 
differentiating (', 7.18) twice (a courageous step with laboratory data!), 

(3.7.22) 

This allows E[k] to be determined.   It also shows that if E[k] varies as a power of k in some range the.i 
£^i(A;j) will vary with the same power of kx. 

Figure 3.7.3 Coordinates for one-dimensional spectrum integration 

Eqn. (3.7.21) in essence defines Qn as a one-dimensional Fourier cosine transform of Ei- The invers"! 
transform is 

(3.7.23) 
2 y00 

£i(fci) = - /      Qn(>-1,0,0)cos(fc1r1)(ir1. 
"■ Jo 

Noting that (Jn(0) = 9J/3 in isotropic turbulence, the integral scale defined by (3.4.15) is given by (3.7.23) 
as 

In = A, = 1^,(0) (3.7.24) V^(0) 



1-23 

A/ is the integral scale derived from the longitudinal correlation function /(r), and hence it is called the 
called the longitudinal integral scale. Since it is non-iero, Ei (0) > 0, in contrast to £(0) = 0. 

3.8 Dissipation in Isotropie turbulence 

Using the Isotropie spectrum (3.7.14) in (3.5.9), carrying out the integrations using polar coordinates 
as above, the dissipation rate is found as 

i/ /    PEWdk (3.8.1) 
Jo 

The factor k7 means that higher wave numbers (smaller scales) make more contribution to the dissipation 
(and vorticity) than they do to the energy (compare 3.7.17). 

Since the small-scale component of turbulence is generally throught to be very nearly Isotropie at high 
Reynolds numbers, Isotropie turbulence theory is used as an aid in estimating e from laboratory data. This 
approach makes use of the tensor Aj>« defined by (3.5.1). In an Isotropie field, the only tensors upon which 
Dijpq can depend are the Isotropie numerical tensors, hence it must be of the form 

Ajp« = CiSijSpq + CzSipSjq + CsfifSjp (3.8.2) 

where the coefficients must be scalars. The coefficients can be evaluated from three known constraints. First, 
the definition forces a symmetry, 

Dijpq = Djiqp. (3.8.3a) 

Second, continuity requires that 

Finally, we know that 

Using these eonsidition, one finds 

Ay., = 0. (3.8.36) 

e = vDupp. (3.8.3c) 

Di'M = Thü^6''6'"' " 4^",'5j« + ^PMI- (3.8.4) 

The pertinent quantity most easily measured in an experiment (again using Taylor's hypothesis) is 

K..)2^. (3.8.5) 

This is usually the way that e is estimated in laboratory experiments. 
Another important turblence scale defined in terms of the dissipation is the microscale. It can be 

approached through the longitudinal correlation function /(r). The symmetry property (3.4.11) indicates 
that /(r) must be an even function of r, so its expansion is 

/(r) = 1 - iar2 + 0(r4) (3.8.6) 

The interception of this osculating parabola (Fig.  3.8.1) with / = 0 defines a scale A; = \/2/a, called the 
longitudinal Taylor microscale. From (3.5.4), using (3.7.5) and then (3.8.4), 

3 n e 
o = -i^ini = -—j 

so 

X} = I0uq2/e. (3.8.7) 

Alternatively, the dissipation rate can be expressed as 

e=10iy^-. (3.8.8) 

This equation is sometimes used to determine e from measurements of the longitudinal correlation. 
Using (3.2.3) and (3.2.2), the ratio of the Taylor microscale to the Kolmogorov scale is 

7^- = ■/iÖÄi'4 (3.8.9) 
IK 
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Using (3.2.1), the ratio of the energy-containing scale to the Taylor scale is 

t    _      1     pl/2 (3.8.10) 

Thus the microscale falls between the smallest and largest scales. Although it is the most commonly reported 
turbulence scale, it is the least well understood. It has been suggested that it is a measure nf the size of the 
loops in the vortex filaments, but this is not at all certain. 

/w 

x, 

Figure 3.8.1 The osculating parabola defines the Taylor microscale 

3.9 Scaling of the spectrum in isotropic turbulence 

The general form of E{k) deduced from measurements in isotropic turbulence is shown in Fig. 3.7.1. By 
(3.7.17), the area under the curve is the turbulent kinetic energy, to which then greatest contributions come 
from wavenumbers around the peak. The vorticity and dissipation occur predominantly at high wavenumbers. 

E[k) 

Figure 3.9.1 Form of the spectrum in isotropic turbulence 

It is generally thought that the small-scale motions in any turbulent flow become isotropic at high 
Reynolds numbers, and therefore that the Kolmogorov scales characterize the high wavenumber region 
of any turbulent flow. Moreover, if one assumes that there is a universal small-scale spectrum, then by 
dimensional analysis it must be of the form 

(3.9.1) 

The one-dimensional spectrum Ei(ki) would have to scale in the same manner. Figure 3.9.2 shows that the 
data from a wide variety of flows do indeed collapse when plotted in these Kolmogorov variables. The data 
flatten at low wavenumbers because they are one-dimensional spectra where £i(0) is given by (3.7.24). 
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STREAMWISE ENERGY SPECTRA FOR VARIOUS TURBULENT FLOWS 
(CHAPMAN, 1979) 

10"' to-1 

DIMENSIONLESSWAVi NUMBER, h/k. 

Figure 3.9.2 Spectra in Kolmogorov variables 

Kolmogorov suggested that there should be a range of wavenumbers in which the main process is the 
passing of energy from larger eddies to smaller eddies (the cascade of turbulence energy), and that the 
structure of this region should depend only on the rate of energy cascade. Since this cascade ultimately ends 
with dissipation at the small scales, the rate of energy cascade must be e. If one assumes that E(k) depends 



I 2h 

only on t (and of course k) in thia range, by dimensional analysis 

E{k)k 6/3,-2/3 constant = a 

E{k) = at^k-V3. (3.9.2) 

This is the Komogorov spectrum, a cornerstone of turbulence. Measurements give a Kotmogorov constant a 
of about 1.5. The data of Figure 3.9.2 show the -5/3 range, with longer runs of -5/3 behavior at larger 
Reynolds numbers, consistent with the broadening of scales as RT   . 

In the vicinity of the peak in E{k), the spectrum should scale on the large-scale variables (see section 
3.1), and hence should collapse when plotted as 

'-m 
-(?)- (3.9.3) 

Where this form overlaps with the Kolmogorov spectrum the function G must be such that q drops out, and 
this again establishes the -5/3 law for the asymptotic overlap range between low and high wavenumbers. 

Figure 3.9.1 indicates that E[k) —• 0 as fc —» 0, but there is controversy as to just how. There are 
good arguments supporting both k2 (Saffman) and k* (Loitskianski) variation as A: —• 0. The k* behavior 
is required if Eij is to be analytic at t = 0. The k7 behavior implies some residual preferential directions 
at zero wavenumbers, which may be more characteristic of physical experiments. Numerical simulations 
with delta spectra at mid-range fill-out as A:4 as the turbulence develops, but simulations initiated with k2 

behavior at low wavenumbers persist as k2. Simple models of turbulence show that the rate of energy decay 
in isotropic turbulence depends on the low wavenumber portion of the spectrum, and with the experimental 
decay rates support the k2. 

E{k,t) 

Figure 3.9.3 Evolution of the spectrum in decaying isotropic turbulence 

Turbulence not subjected to mean deformation will decay is time passes. The larger eddies take more 
time to change, and the smallest scales of motion adjust most rapidly. Figure 3.9.3 depicts the nature of 
the evolution of E{k, t) (we now include the time variable heretofore suppressed). Note that the peak moves 
to larger scales (small wavenumbers) because the smaller eddies die out faster. Thus as time progresses the 
integral scale will grow. 
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£(M) 

-l- 

Figure 3.9.4 Model spectrum for Isotropie turbulence 

A simple model spectrum for isotropic turbulence is shown in Fig.   3.9.4.   It assumes a power law 
behavior at low wavenumbers, a -5/3 inertial range, and a sharp cutoff at the Kolmogorov scale; 

= { 
Ak" for k < ki 

E(k) = { a!'2/3k-b'i   for kL<k<kv. 
for k > kv 

Matching the spectrum at k^ gives 

Assuming fc„ >• fcti 

m 2/3\3/(3">+S) 

(3.9.4) 

(3.9.5) 

^=/;£(^=a(^+i)^v/3 

from which an estimate of the peak wavenumber is obtained, 

e        [     \m+l      2) 

Again assuming kv >• ^L, the viscous cutoff wavenumber is estimated 

/•OO o 

£ = !//    tfEWdk^v-ae2'3^!3 

Jo 4 

from which 
Ku3'* 
71* \3a) 

3/4 

(3.9.6) 

(3.9.7) 

(3.9.8) 

It is left as an exercise to work out the one-dimensional spectrum Ei for this model spectrum, and from that 
to determine the integral scale. For m = 2 and a = 1.5, one finds 

A/e/g3-= 0.11. (3.9.9) 

This model spectrum exhibits the proper scaling for isoropic turbulence, and gives values of the scales within 
about a factor of two of those found from actual spectra. It is very useful in constructing simple turbulence 
models, in setting up initial fields for turbulence simulations, and in addressing other aspects of homogeneous 
turbulence. 
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S.10 Third-order •tatlatlca in Isotropie turbulence 

CoireUtiont involving producti of three quantities are called third order statistics. These depend on the 
relative phuei of the Fourier modes, information not contained in the spectrum tensor £,y. Of particular 
interest in turbulence modeling «re one-point third-order statistics. For Isotropie turbulence these tensors 
can be worked out using the methods used previously. For example, 

ü^=Cg
3/Jt.jfc. (3.10.1) 

In dealing with the vorticity and dissipation equations, one encounters the tensor 

^J>Mr = u;,p«;„uik,r. (3.10.2) 

This is evaluated for Isotropie turbulence by first writing the general tensor 

^ijkp^r — iipiCiSj-fSfcr + CjÄyfcÄ,,. + CßS^S^) + 4,-, (C^p^fcr + Cs*pfcÄ,r + CaSprSqk) 

-i-6it{OfSpjSlit + Ct6pl,6jr + CtSprSjk) + SikiCioSpjSqr + CuSpqBjr + CiiSpr&jq) 

+fir{Cl3SpjSqk + CltSpqSjic + CuSpkSqj). (3.10.3) 

There are three are three symmetry constraints, 

iifkpir - ^jipqkr (3.10.4a) 

tiikpqr = <l>kiirqp (3.10.46) 

tijkpqr = ^ikjprq- (3.10.4c) 

Continuity also provides some constraints, but with the symmetries enforced on'v one is required, 

tiikipq = 0- (3.10.5) 

Forming («Ju'uj^),^* and using homogeneity conditions, one can show that 

tijkiki = 0. (3.10.6) 

With these constraints, (3.10.3) can be reduced to a form containing only one unknown coefficient.   With 
C5 = A, one finds 

tijkpqr — ^[{SipSjqtkr + SijSpkSqr + Sijipr^qk + ^iqiprSjk + GikSpjSqr + &ik&pq&iT + ^ir^pq^jk) 

4 3 1 
-■A^ip^jkSqr-i-SijSpqSkr + Sik'iprSiq)- -{SiqSpk6jr +6irSpj6qk) - -(6ip6jr6kq + 6iq6pi6kr+SirSpk^,,)]. (3.10.7) 

For example,   
K,i)3 = M (3.10.8) 

35 
^;»:, = -jA- (310-9) 

The derivative »ktwnett 1 is related to A; using (3.8.5) and (3.10.8), 

7 = R7)5/[K7F]3/:' = >»(1^)32. (3.10.10) 

The skewneu is measured to be negative, the term given by (3.10.9) is positive. This is the turbulent vortex 
stretching source term in the equation for mean-square vorticity (2.8.2), by which the turbulence tends to 
enhance its own mean-square vorticity. 
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4. RAPID DISTORTION OF HOMOGENEOUS TURBULENCE 

4.1 Introduction 

The state of homogeneous turbulence changes significantly when it u subjected to mean strain. This 
occurs in practice whenever turbulence passes through a duct of variable cross-section, such as a nozzle, when 
turbulence is sheared by the mean flow, or when turbulence is subjected to a mean rotation, The general 
trends can be understood using vortex stretching concepts. For example, passing turbulence through an 
axisymmetric nozzle stretches the vortex filaments in the flow direction and tends to align them with the 
flow direction, reducing the turbulent fluctuations in the direction of flow but increasing the fluctuations 
transverse to the flow. 

Because of the non-linearity of the governing equations, it is impossible to develop a rigorous theory of 
these processes. There are two alternative approaches to such a theory. The first is to use some sort of a 
closure model to produce a set of closed equations describing the evolution of statistical properties of the 
turbulence in response to the mean strain. The second approach is to simplify and then solve the exact 
equations for special cases. Both approaches are useful. In this chapter we examine rapid distortion theory 
(RDT), in which the exact equations for the fluctuation field are approximated in a way that is valid for 
very strong imposed mean strain rate, yielding linear equations amenable to exact solution. 

It might be thought that the response to large strain rate could be calculated using the Reynolds stress 
transport equations (2.7.1), neglecting the terms that do not explicitly contain the mean velocity gradients. 
However, this analysis overpredicts the changes in the Reynolds stresses, because the pressure-strain term 
Tij in (2.7.1) produces an immediate effect that reduces the impact of the production term Piy by a factor 
of about 50%. The Poisson equation for the fluctuation pressure (2.5.3) shows that a sudden onset of mean 
velocity gradient instantly changes the fluctuation pressure field. The result is a sudden change of T^ with 
the onset of applied Sy, and this must be considered in the analysis. Turbulence modelers refer to the part 
of Tij that changes suddenly with a sudden change in the mean deformation rate as the rapid pressure strain 
term. RDT plays a key role in understanding and modeling this term, and this chapter is intended to aid 
the use of RDT in this work. 

The basic idea of RDT is that when |5|(j2/£ » 1 the time scale of the turbulence q2/e is long compared 
to that of the mean deformation, and so the turbulence does not have time to interact with itself. Thus, the 
non-linear terms in the governing equations (2.5.1)-(2.5.3) involving products of fluctuation quantities are 
neglected, and so the RDT equations are linear in the fluctuation quantities. The viscous terms are linear 
and can be included in the analysis, but are often neglected and will be here. 

These equations contain the mean velocity gradients, which must be independent of position for ho- 
mogeneous turbulence but may depend on time. The convective operators D contain the mean velocities, 
which must vary linearly with x in homogeneous turbulence. These coefficients prevent representation of 
the solution as periodic in the coordinates, and this hampers direct solution by Fourier methods. However, 
when transformed to coordinates marked on the mean flow at the start of the distortion, the variable co- 
efficients are removed and the solution may be obtained by Fourier methods in the transformed system. 
This transformation is used in the numerical simulations of homogeneous turbulence (Rogallo 1981), where 
it permits the numerical solution to be exact for infinitely rapid distortions! The numerical simulations of 
the full equations carried out using this program are useful in helping assess the range of applicability of 
RDT, and it is rather surprising that, for some types of strain, RDT works remarkably well even at relatively 
low strain-rates (Lee and Reynolds 1985). Thus, RDT is becoming recognized as being very important and 
useful in turbulence analysis, modeling and simulation (Savill 1987). 

4.2 The RDT equations 

The most general mean velocity field in which homogeneous turbulence can exist is of the form 

Ui = Aik(t)xk (4.2.1a) 

from which 
U„k=A>k(t). (4.2.16) 

Note that (3.1.1) restricts the rotational history of the imposed mean deformation, but any mean strain rate 
history can be imposed. 
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Substituting (4.2.1) in (2.5.1), the inviscid RDT approximation for homogeneous turbulence is 

t.; + Ajkxku'ilj=-u'iA,j - -p',. . (4.2.2) 

The continuity equation (2.3.4) also applies. We remind the reader that these equations hold if p = p(t), so 
they can be applied in certain types of compressible flow situations. 

Solution by Fourier methods is practical only if the coefficients in the equations are independent of x. 
Therefore, it is necessary to transform the equations to remove the troublesome term on the left-hand side. 
The transformation is assumed to be 

6 = B«!*)i* r = t. (4.2.3) 

TVansforming (4.2.2) to the new coordinates, the left-hand side becomes 

9ui      9u,  • du, 
-5— + -^-«„fcik + Alkxk—-Bni. 

Setting the coefficient of i^ to zero to remove the variable coefTicient, 

Bnk+A,kBn,=0. (4.2.4) 

This defines the Rogallo transformation. The B,j can be found by solving these linear equations, although 
a closed-form solution is not feasible.   The transformation ties the new coordinate systems to the mean 
motion, with the new grid distorting and rotating as demanded by the mean flow.   The Rogallo code for 
direct simulation of homogeneous turbulence operates in this coordinate system. 

With this transformation the RDT momentum equations (4.2.2) become 

dr pd^k 

and the continuity equation (2.3.4) becomes 

du' 
-^-Bti = 0. (4.2.56) 

The Poisson equation for the pressure fluctuation is obtained by taking the derivative of (4.2.5a) with respect 
to £k and the derivative of (4.2.5b) with respect to r and combining, using (4.2.4). Alternatively, one can 
simply transform (2.5.3). The result is 

1   av öu' 
~irlrfl"wfl« =-2B«j4<'5/- (425c) 

These linear equations can be solved to track the evolution of the Fourier coefficients of the velocity field in the 
transformed coordiates. The Reynolds stresses are integrals of this spectrum function, and the integrations 
may be carried out in the transformed coordinates. If the spectrum in the original coordinates is involved, 
the spectrum must be mapped back to x space using the coordinate transformation. 

Closed-form solution of the RDT equations for a general problem is not possible. However, exact 
solutions for special cases can be obtained, in some cases in closed form and in others in terms of integrals. 
The general solution can be found as a power series in time. Some of these solutions that play useful roles 
in understanding turbulence and in turbulence modeling will now be discussed. 

4.3 Response of turbulence to rapid rotation 

RDT can be applied to study the effect of rapid rotation on turbulence in the absence of strain. Taking 
the rotation as clockwise about the 13 axis, the mean velocity is 

Ui = rxj U2 = -rn (4.3.Ifc) 
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and the coordinate transformation is (Fig. 4.3.1) 

ti = Xi co8(rr) - i3«in(rr) 

fa = ij cos(rr) + ii sinlFr) 

6 = 13 

r = t. 

TVansforming, the RDT equations become 

9ui 1 1 
dr Pi 

du? 
dr 

1 [ 
PL 

co9(rT)|fL + 8in(I>)|L] -UjP 

-sin^^+coslrr)^ + uir 

9u3         1 dp 

dr          pd^i 

The transformed continuity equation is 

Mcos(rr) + M Sin(rr) - § si„(rr) + ^ cos{r.) + |U o. 
Oil 0& Oil Oi2 "« 

(4.3.2a) 

(4.3.26) 

(4.3,2c) 

(4.3.2cl) 

{4.3.3a) 

(4.3.36) 

(4.3.3c) 

(4.3.3d) 

It is helpful to transform the velocity components to the rotating coordinate system.  Denoting these 
velocities by v^, 

vi = uicosfrV) - U2sin(rr) (4.3.4a) 

V2 = U2 cosfFr) + ui sinfFr) 

«3 = U3. 

Forming the equations for the new velocities form the old, one finds 

3ui 1 dp      .   „ 
or pad 

3v2 ! aP ^ 1    r 
-37 = —l7- + 2,'ir 

or pOi2 

dvs _     I dp 

dr p 8^3 

The second terms on the right ar? of course the Coriolis terms. 
Now we seek the solution for the evolution of the Fourier modes in the transformed space.  Following 

the developments of section 3.3, we write 

(4.3.46) 

(4.3.4c) 

(4.3.5a) 

(4.3.56) 

(4.3.5c) 

(4.3.5d) 

IC 

(4.3.6a) 

(4.3.66) 

where ic is the wavenumber in the transformed coordinates   Equating coefficients of like exponentials, 

(4.3.7a) 
dvi      »«I .    ,r. 
dr p 
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— = —p + 2ru1 
OT p 

dr p 

KiCi = 0. 

Applying the continuity equation (4.3.7d) to (4.3.7a-c), 

1        2T{C1Ki - t)i<ca) 
pP ~ XK> 

(4.3.76) 

(4.3.7<;) 

(4.3.7d) 

(4.3.8) 

where K1 = K\ + K\ + K\.   Substituting (4.3.8) in (4.3.7a-c), and seeking solutions of the form C,(£, r) 
Oi exp(t^r), one obtains 

(4.3.9a) ißax - 2r-i(<i3(C1 - o^j) + 2?ai = 0 

ißai - 2r^|(a2Ki - 0^2) - 2ra1 = 0 

ißai - 2r —(aj«! - a^) = 0. 

(4.3.96) 

(4.3.9c) 

This linear equation system has non-trivial solutions only if the determinant of the coefficient matrix vanishes. 
This condition gives 

(4.3.10) ^ = 4^(1 - ^^i) = 4r2^| > 0. 

Hence, except for modes with K3 = 0, the solutions are undamptd oacillations in time at frequency /8(K). 

The «3 = 0 modes require special attention.   They correspond to two-dimensional modes with their 
vorticity aligned with the rotation axis. The solution for these modes is 

where 

ihi&.r) = 02(fi,0) + C((c)/cir 

(4.3.:ia) 

(4.3.116) 

(4.3.11c) 

(4.3.lid) 

But for «3=0 the numerator of C is zero by continuity, and hence the Fourier coefficients of these modes 
do not change under rapid rotation. Thus, these coefficients can also be regarded as undamped oscillations 
at frequency /J(ä). 

The solution for the Fourier coefficients is therefore 

0, = o+<:^r-(-a.e-^r. 

ai-t and a2± are related by (4.3.9a) or (4.3.9b), 

(±l^ + ^)ai±=(i_l)a2±. 
The coefficients ai± are set by the initial values of the Fourier amplitudes, 

u.o = ai+ + ai- 

where t),o is the initial value of &,(«). Using (4.3.13) and (4.3.14), one finds 

ai+ = ±t- 
2/C3 

/    .K3       /C1K2V /        «J\ 
«20 

(4.3.12) 

(4.3.13) 

(4.3.14) 

(4.3.15) 
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Following »ection 3.4, the spectrum tensor £;, (in the rotating coordinate system) is 

%(&.*■) =(^)   <^(fi.T)C;(K1r)>. (4.3.16) 

Using the solution and a bit of algebra, one finds 

EnU.r) = ^{2(^1 + ^i)£n(ic,0) + 2(1 - ^ E„U.O) + ^ (l - ^){EM^) + £21(fi,0)) 

+2[(§ " ^f)EnM - f1- ä)^"15'01 " ^l1 " ä)(£l2<S'0) + ^'(S-O))] ^(2/30 

,-^nU,0) + ^(l-^W12(£,0) + £;2l(»c,0))   Mn(2^f)|. (4.3.17) «iKjKa , 

If the initial turbulence is Isotropie, the initial spectrum is given by (3.7.14), and one finds that the 
coefficients of the sin and cos terms vanish; hence there is no change in the spectrum as viewed by an obsever 
in the rotating coordinate system. Since the spectrum is Isotropie, the spectrum seen by a stationary observer 
is also unchanged. Thus, rotation of itself wilt not distort the spectrum of isotropic turbulence. 

If the initial spectrum is anisotropic, as for example produced by prior strain and associated rotation, 
the residual rotation will simply cause the spectrum to oscillate at a frequency u — 20(K). The associated 
Reynolds stress (in the rotating frame), determined by integrating £11 over all K, will oscillate in a compli- 
cated manner that depends on the initial spectrum. However, using the symmetry property of the spectrum 
(3.4.13), the contribution of the a'm{2ßT) term to the integral is seen to vanish. Hence, relative to a rotating 
observer, the Reynolds stress oscillations can be expressed as an even power series in r arising from the 
cos(2/9r) term. Hence, the Reynolds stresses seen by a stationary observer would, to O(t), appear to rotate 
in the manner described by the kinematic rotation terms, with deviations from this behavior being described 
by an even power series in time. 

These are important results for turbulence modeling. Turbulence models, when reduced to the same 
rapid distortion approximations, should not show any effect of pure rotation (rotation without straining) 
on isotropic turbulence. Moreover, when applied to the pure rotation of anisotropic turbulence, the models 
should shown the kinematic rotation of the Reynolds stress described by (2.7.4), plus modifications by an 
even power series in time. This condition is very useful in setting coefficients in turbulence models, and we 
shall use it in Chapter 6. 

4.4 Rapid isotropic compression or expansion 

Consider next isotropic expansion (or compression) with 

Ui = Ti.. (4.4.1) 

The RDT momentum equations are 

ü'i + rxu'i,i = -rul~~p',i. (4.4.2) 

The density is given by the continuity equation, 

p = -3pr. (4.4.3) 

The RDT transformation is 
f. = i,«-1"' T = t (4.4.4) 

and the transformed equations are 

%-^-wM--" "■"> 
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^-r*=0. (4.4.7) 
oil 

Multiplying (4.4.6) by uj, the pressure term drops out by continuity (4.4.7). Averaging, we obtain the 
RDT approximation for the kinetic energy, 

^ = -lV. (4.4.8) 

The solution is 
I3 = &-** (4.4.9) 

where q* is the initial kinetic energy.   Thus, the turbulence kinetic energy will decrease with expansion 
(P > 0) and increase with compression. 

The evolution of the spectrum is obtained by solving the individual component equations. Fourier 
expansions are used as above. The pressure fluctuations (i.e. the rapid part) are zero by continuity, and all 
Fourier modes of the velocity vary as eip(-rt). Thus, the spectrum retains its inital shape in the Hretched 
coordinate system, and simply scales in magnitude with q2. As a consequence the integral scale (3.4.15) 
varies in proportion to the strain, 

AI(t) = K,{0)eri. (4.4.10) 

These results are useful in constructing turbulence models for compressible turbulence. Some of the 
turbulence models currently in use do not predict the proper behavior with compression, some even predicting 
an increase in length scale as turbulence is compressed! 

4.5 Response of turbulence to rapid irrotational strain 

RDT analysis for irrotational mean strain is neatly handled using the vorticity equation. Under the 
RDT approximations, with no mean rotation, (2.5.2) reduces to 

Tki'i = u'jSij - u'tSkk- (4.5.1) 

We work in principal coordinates of Si, and take 

Ua = ra(t)xa. (4.5.2) 

Recall that Greek indices are not summed. The RDT coordinate transformation is 

£a = Xa/'a T = t (4.5.3a, t) 

where 

= exp(/" ra(f')dt^ (4.5.3c) 

is the total strain in the a direction. The transformed vorticity equation is 

where 

The solution of (4.5.4) is 

where 

fa  = To — To 

To = n + r2 + r3. 

w'a(x1r)=<(x,0)«(, 

0=exp   /   faifW] 
\Jo               1 

(4.5.4a) 

{4.5.5a) 

(4.5.56) 

(4.5.6) 

(4.5.7) 
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is a modified total strain in the a direction. This result clearly shows the essence of RDT; it computes 
the change in the turbulent state by considering the rapid vortex streching imposed by the mean field. The 
velocity field can be deduced from the vorticity field. In the transformed coordinates, the Poisson equation 
(1.9.5) for the velocity gives 

°Z3 «3 "« «2 

.2    , 1^2   * "^3 

where the transformed Laplace operator is 

V2 = 
i a2     i a2     i a2 

+ -s + ^- e2 atf     ei 3$     el a?2 (4.5.86) 

The equations for oij and iij'3 can be obtained by permuting the indices.   The solution is obtained using 
Fourier expansions, 

u;(x, r) = £>(*.')<-","(' 

u:(x,r) = £>(«, Oa-*-«" 

(4.5.9a) 

(4.5.96) 

The solution for üi is 

"i 
l{K3W2/e3 - «2013/62) 

«1 «2 «3 

The other components can be found by permutation of the indices. 
The velocity spectrum function f,y is related to the vorticity spectrum function Hi, by 

p   ,      ■      (^)atf22(ic,0) + (^)2/Mic,0) - 2(^)(gl)ff23(ic.O) 
£'ll(Sir) - T2 • 

(t)2+(^)a+(ff)s 

From the solution for the vorticity evolution (4.6,6), 

Ha(t(K,r) = Hafl(Kt0)eaeß. 

(4.5.10) 

(4.5.11) 

(4.5.12) 

If we assume that the initial turbulence is Isotropie, the initial vorticity spectrum is given by (3.7.23), 
with k replaced by K. Using this spectrum and (4.5.12) in (4.5.11), 

„ ,    .    E[K] (gf*!^ - 4) + (|)j^ - 4) + 2(||Hj 
£u(s,r) - w r., ,,   ~ ~   ~ .0i2 ■ 

(^)2 + (^)2 + (^ 
(4.5.13) 

The spectra of £21 and E33 can be found by permuting the indices. 
The Reynolds stresses can now be calculated by integrating Eij over all wavenumbers (see 3.4.6). The 

integrations are most easily carried out using spherical coordinates, and can be evaluated in closed form for 
a few very simple cases, such as isotropic compression. However, the general case of irrotational strain can 
be handled by power series expansion in the total strains. In (4.5.3c) we expand 

ea = exp(a) = 1 + aa + -aa + ... (4.5.14) 

The integrals are then expressed as power series in the aa, and evaluated in spherical coordinates, where the 
angular integrations can be carried out analytically. The K integration produces 9Q/3, the initial isotropic 
value of An. Using this approach, the Reynolds stress Rij, dissipation tensor Dij, and vorticity Vn = u\u[ 
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were evaluated by the author and Moon Lee (Reynolds 1983) to 0(a2). Subsequently Piomelli used the 
symbolic manipulation program MACSYMA to extend the Reynolds stress (the most important quantity 
for turbulence modeling) to 0(a!') (Lee, Piomelli, and Reynolds 1986). The results are as follows (the other 
components can be found by permuting the indices): 

ßu = 9o - - —(2ao + 4a!) + —(lOajj + 12a? - 32a2a3) + T7z(-n<4 + 48aoa2a3 - 8aJ + 48a1a2a3) 
o       15 1Ü5 315 

+ (30aJ + 32a2ai - 480^0? - 128a2a2a3 - 320aoaia?a3 + 36al - 32a5a2a3 + 16a^a5) 
3465 

 (-244aJ; - 1440ajai + 3360aga? - 4320a^a^ - 2488a^ + UOOajJajaa + TeOOoj^a^jaj + 4320aoa* 
225225 

-3440aoa?a2a3 - 880aoa^a§ + 5200a5a2a3 + 560aia^a5) + 0(ac) 

2*o 
1 
3 

2            1 
- -a, + -ao + 0{c 2)" 

_W
2 

3 
1 + 2a, - a0 + 0(a2) 

£ = £0 l-iao + 0(a2) 

, 4    ,        4  .   ,2 ,. 184 ,   ,3 .   ,   ,,   ,     124 ,   .« .2   .   .      „   .2   .2i 
6" = --J50l~ gjl11!   +2a2a3) + ^^(al    "aia2a3) +5^(ai   + 4a! a2a3 - 2a2 03 ) 

8 
23648625 

where the Reynolds stress anisotropy tensor is 

hi 

(196819a;5 + 25189a;a22a;2 - 479453o;3a;a5) + 0(a*0) 

Hi, - fSjjß 

(4.5.15) 

(4.5.16) 

(4.5.17) 

(4.5.18) 

(4.5.19) 

(4.5.20) 

and the anisotropic strain components are 

a*  = au - -ao. (4.5.21) 

Note that the anisotropy tensor 6;, is depends only on the total anisotropic strain, and is independent of the 
strain-rate history. These results are useful in turbulence modeling where one seeks to develop models that 
will be consistent with RDT when the RDT approximations are applied to the model. 

4.6 Combinations of strain and rotation 

The genera' RDT problem for homogeneous turbulence involves combinations of strain and rotation, for 
which a general solution can be developed in symbolic form (Cambon 1981). Using the Fourier expansions 
(-1.5.9) and a similar one for the pressure, (4.2.5c) is first solved to express the Fourier coefficients of the 
pressure in terms of those of the velocity, 

1. 2iKkBkiAij 
-P~ - ' - 
P 

Then, the Fourier expansion of (4.2.5a) gives 

H *'n's'm£}mpanp 

17 'Ai'U' +  ,    .r     B       R      APiUi = "W- 

(4.6.1) 

(4.6.2) 
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Following Cambon, the solution can be expressed using Green's functions, 

ü,(K,r) = <7ifcte,T)ufc(K,0) (4.6,3) 

wl.ere the Green's functions are given by the solution of 

gG.^r)^ C,  'ic,0) = Au. (4.6.4) 
or 

This allows the spectrum tensor Eij to be expressed in terms of the initial spectrum, 

Eiii&.T] = Giv(&,T]G'iq{s.,r]Em{&0). (4.6.5) 

The Reynolds stresses are then simply integrals of the spectrum function over all 5. 
This method of solution is instructive for looking at the structure of the solution, but the calculations for 

the Reynolds stresses require approximate evaluation of the integrak, for example by power series expansions. 
Moreover, when the principal axes of the strain rate vary with time the Green's functions are not easily 
obtained, except perhaps as power series in time. If one is going to resort to series solution, a direct solution 
by power series in time is simpler. We will develop this here for future reference. 

A superscript summation Convention aids the analysis. We denote a series by 

A = f^ A^'lt'1 = At"hn. (4.6.6) 
ri=0 

Any repeated superscript or power is summed over all possible values. The delimiters on the superscripts 
establish the range, with ( ) establishing a lowest value of 0 and | { establishing a lowest value of unity. 
Muliplication of two series and sorting out of powers of t is then very easily accomplished. For example, 
simply replacing n by r - m in the product below collects the coefficient of f, 

AB = A{")tnBim)t'n = Air-m]Bim)tr. (4.6.7) 

Here the delimiters correctly establish that the m summation in the coefficient of tr is from 0 to r. The 
leading coefficients can also be extracted, 

Ä(r-m)B{m)  = Ai') ßlO) + Am gir) + A\r-m]B\m\ (i.&.S) 

where the m sum at the end now ranges from 1 to r — 1. 
We treat a general case of arbitrary strain and initial rotation as applied to initially isotropic turbulence, 

and express the velocity gradient tensor A,k (see 4.2.1) as 

AMt] = S,k{t) + ^k,.,nil{t). (4.6.9) 

The strain-rate hisUr- described by S,k{t) and the initial rotation described by fi^O) will be arbitrary, and 
the rotation history is governed by (3.1.1). 

Expanding, 

s,k = s^h" n, = nj,"'tn 

An, = A^t" B,k = B^h" 

ü,=ii\nhn pr=p("hn. (4.6.10) 

The coefficients then are generated recursively. FVom (3.1.1) 

(r+ i)Q;r+11 = n^'s,1;-''1 -n^sj;-". (4.6.11) 
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FVom (4.6.11) 

FVom (4.2.4) 

i(') _ gir)   ,   i n(r) 

The Fourier representation (in stretched space) of (4.2.53) gives 

Aik        "n] 
j(0) 

The continuity condition (4.2.5b) gives 

K^U; (r-l) D('I) Bl 

The Fourier representation of the Poisson equation (4.2.5c) gives 

Extracting the leading pressure term given by r = O.using (4.6.15b), 

---cV" = hkKmpt'-*hMB^Bl:l+2iKkBir''A'fr'h<;) 

(4.6.12) 

(4.6.13a, fc) 

(4.6.14) 

(4.6.15) 

(4.6.16) 

(4.6.17) 

where the notation llr' forces r > 0 in the sum. 
The procedure is now very simple. At each order r, one finds the rotation term from from (1.6.11), the 

velocity gradient term from (4.6.12), the transformation term from (4.6.13), the pressure term from (4.6.17), 
and the velocity terms from (4.6.14). The spectrum tensor is expressed as a similar series expansion, and its 
terms are generated and integrated in spherical coordinates to calculate the Reynolds stresses, much as in 
the previous section. This is a natural task for a symbolic manipulator like MACSYMA. The result would 
enable the determination of all unknown coefficients in the model for the rapid pressure strain term (see 
Chapter 6); we are attempting (o carry out this evaluation. 

4.7 Two-dimensional turbulence 

RDT of two-dimensional turbulence is useful for testing the range of performance of turbulence mod- 
els. Stanford student Laura Pauley carried out an RDT analysis of initially axisymmetric two-dimensional 
turbulence for three-dimensional irrotational strain along the principal axes of 6^, with 622 = -1/3. Her 
results are 

-{a] + al) + 0^3 + 2ä2(ai + 02 + 03) fiu = ^{l + K+2ä 2 +03] + 

11 
-—aT - 

11 101 

24 8 
aia3 - vaia3 " ^7a3 + 52(ai + a3 + 20103) + 202   m + -5 8 24 

+ 0(a4 

4» = 6 
45 9 

(4.7.1) 

4.7.2 

where the total strain in the»"1 direction is e; = exp(ai), äj = oj-ao and do = 01 + 02 + 03. Note that strain 
aligned with the vorticity does not affect the anisotropy, and that changes in anisotrop/ do not occur until 
third order. It would be instructive and useful to extend this analysis to more general 2-D cases including 
rotation and strain not aligned with the principal axes of 6y. 
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B. MODELING SCALE EVOLUTION IN HOMOGENEOUS TURBULENCE 

6.1 Introduction 

This chapter and the next are devoted to one-point models of homogeneous turbulence. Here we deal 
with modeling the evolution of the length and time scales, assuming that whatever must be known about 
the tensor character of the turbulence can be generated by an anisotropy model. Anisotropy modeling is 
addressed in the subsequent chapter. 

The turbulent kinetic energy equation provides the equation for the turbulence velocity scale q2. For 
liomogeneous turbulence (2.C.2) becomes 

(,2) = 2(;> - £). (5.1.1) 

If the other model scale variable is e, this equation is closed. Alternatively, if one choses to use a time scale 
variable r instead, a model relating e to r is required. There are many clues that the use of a time scale 
as the second scale parameter would offer advantages in modeling more general flows. Where it becomes 
desirable to think along these lines we will use the large-eddy time scale identihed in Chapter 3, 

r = ^. (5.1.2)1 

Following the most populir current trend, we shall start by using a model equation for c as our second 
equation. In homogeneous turbulence (see 3.6.4) ff — i/w2, and so the w2 equation (2.8.12) yields the e (care 
must be taken to account for the density change when introducing v). For homogeneous turbulence with 
p = p[t) and n = constant the result is 

1 
e = luw'yS'j - -eSkk + 2ÜJs'iJu'i + 2i/uiy]s[] - 2i/V,Ja;;,J (5.1.3) 

where 

S;,---S,, - ±SkkStl (5.1.4) 

is the anisotropic strain rate. The last two terms provide the means by which e changes in Isotropie turbu- 
lence. In addition, we see that incompressible strain, Isotropie volume change, and rotation will also modify 
the evolution of c. We shall address these issues separately. 

5.2 Decay of Isotropie turbulence 

With no production the energy equation gives 

9? = -2s (5.2.1) 

Assuming that one can make a model using only q2 and e as variables, the form of the s equation for Isotropie 
turbulence can be deduced by dimensional analysis, 

e2 

i=~C,o-= (5.2.2) 
I2 

where the coefficient C,0 can depend on the turbulence Reynolds number (see 3.2.2) RT — q*l(ve). This is 
the form used by all models of this type. 

Insight is obtained by recognizing that the right hand side of (5.2.1) comes from the difference of the 
last two terms in (5.1.3). The first of these is the turbulent vortex stretching term, which is related to the 
derivative skewness by (3.10.9). The last term can be written as 

2w'2Z!~Z[~ = 2u'i I    k*E(k)dk (5.2.3) 
Jo 

which shows that it is dominated by the smallest scales of motion and hence should scale on the Kolmogorov 
variables. It can be estimated using the model spectrum of Fig 3.9.4. Using these two estimates for Isotropie 

4; 

ir 
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turbulence, put in terms that res.mble the model equation (5.2.1), one find» that both terms scale as \/RT, 

and 
35 / i \ 3/2      *„/ i\ 6/»1, 

'. = sfn^r 
Vl5/ I0V3a/ 

(5.2.4) 

Experiments clearly indicate that a constant coefficient C.o does a very adequate job at higu Reynolds 
numbers, which means that the difference in the two terms within the brackets in (5.2.4) must decrease as 
l/yAj-. Both terms are very large and they are nearly in balance (an estimate of the skewness can be made 
from tliis balance). It would be unwise to model these two large terms separately when we only need their 
difference, and for this reason the two are lumped together in (5.2.2). 

The value of C,o can be determined by fitting the energy decay rate for isotropic turbulence to that 
measured experimentally, and this is what most modelers have done. The exact solution of the q2 and e 
model equations is 

q2 = q?l(\ + t/ay" £ = £„(1 + t/a)-'"t11 (5.2.5a,fc) 

a = ä       n = whn (5-2-5c'd) 

The subscripts 0 denoU initial values. The best experiments suggest n should be in the range 1.1-1.3. At low 
Reynolds numbers, wli^re the turbulence is in its final period, n = 5/2 is found theoretically and confirmed 
experimentally. 

The model spectrum (3.9.4) cm be used to find n (Reynolds 1976) by assuming that the spectrum is 
permanent below A;/,, i.e. that the low wavenumber spectrum parameter A is constant. Expressing e in 
terms of q2 and A using (3.9.5) and (3.9.6), then using this in (5.2.1) to find the q2 history, one obtains 
(5.2.4a) with n = (2m + 2)/(m + 3). This clearly Supportes the idea that the low wavenumber part of the 
spectrum affects the energy decay rate. The k* spectrum (m = 4) gives n = 10/7, which is really too high 
to fit the best experiments very well. However, the k7 spectrum, with m = 2, gives n = 6/5, in quite good 
agreement with experiments. In a finite-Fourier series representation, the assignment of the same energy to 
each low wavenumber Fourier mode would make E„ independent of k and hence E(k) vary like fc2, and so 
k' turbulence can be thought of as being equipartttioned at low wavenumbers. 

With n = 6/5 as suggested by both the experiments and the k2 spectrum, C,u = 11/3, and this is the 
value that we prefer. It is very close to the value of 3.84 used by many k - e modelers. 

5.3 Isotropic compression 

For isotropic turbulence, Rij — q26iJ/3. Denoting 5^ = 3r (see 4.4.1), and assuming isotropic volume 
change with p — p{t), the energy equation (2.6.2) reduces to 

q2 = -2Xq2 -It. (5.3.1) 

The r must be modified to account for the change in volume. The exact s equation (5.1.3) suggests that this 
modification might be 

£
2 

s=-C,o-r-er. (5.3.2) 
1 

For very large T the solutions to the above equations are 

q2 = qle-2Vt (5.3.3a) 

e = £oe"r' (5.3.36) 

The energy development matches RDT (4.4.9). If we assume that the integral scale is proportional to 93/£, 
the large-eddy length scale, then according to (5.3.3) the length scale varies as exp(-2r(). This says that 
expanding the flow volume will reduce the length scale, which should be disturbing to anyone and is not in 
agreement with RDT. Nevertheless, this modification of the e equation was used for some time in i.e. engine 
modeling before the problem was noted (Reynolds 1980). 
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The RDT analysis suggeat» instead that the c equation for this problem should be 

e2      4 
i=-C,a—---eSkk (5.3.4) 

1       3 

For rapid volume change this produces 
e = «o«"41"' (5.3.5) 

for which the length scale varies in proportion to the strain, i.e. as exp(rt). 
This example points out the pitfalls of using the exact equation for e as the basis for its model equation. 

To paraphrase Saffman, one should model the Pkyiics and not the equations. 

5.4 Rotation 

Experiments and numerical simulations show that rotation does not appreciably alter the anisotropy of 
Isotropie turbulence. RDT (section 4.6) showed that rotation does not affect much of the spectrum at all, 
but does tend to produce a slow growth in the energy of the two-dimensional compunent of the turbulence 
aligned with the axis of rotation. The simulations (Bardina et al 1985) reflect this growth as a change in 
the integral scales, with the scale in the direction of the rotation axis becoming longer than the other two as 
time passes. Rotation also reduces the dissipation rate, apparently by inhibiting the energy transfer cascade. 

Most turbulence models in use today show no effect of pure rotation on s, a weakness thai has been 
s'ow to receive correction. Bardina found that his large-eddy simulations and Wiegland and Nagib's (1978) 
experimental data could both be predicted extremely well using a simple modification of the e equation, 

lie2 

« = -—-2-C,n«n (5.4.1a) 
i q 

where fl is the nns rotation rate 
n= v/n.jfl.j. (5.4.16) 

Bardina found that C,u = 0.15/v2 worked well, and we adopt this value. 
The imposition of a mean strain-rate provides a source of turbulent kinetic energy through the turbulence 

production term (2.6.3). 'Ve assume that the anisotropy part of the turbulence model will produce /?,, 
values given q2 and i, hence P need not be modeled. Thus, no modeling for the q2 equation is required for 
homogeneous turbulence. 

The associated changes in the dynamics of e must be incorporated in the t model equation. To date 
the most effective means for doing this is to add a term proportional to P, 

t2 Ps 
i = -C.0^r-C,n€U + C.P— (5.4.1) 

q2 q2 

An estimate of C,p can be made using the homogeneous shear flow data of Tavoularis and Corrsin (1981). 
Homogeneous shear flow apparently reaches an equilibrium structure in which the Reynolds stresses all scale 
with the turbulent kinetic energy. The energy and dissipation rate both increase with time in a manner that 
keeps the turbulence time scale very nearly constant at a value set by the mean shearing rate F = dUi/dx2- 
The equation for r, derived from (5.1.2) using (5.1.1) and (5.4.1), is 

P 
r = (C.o - 2) + C.nllT- - (C.p - 2)-. (5.4.2) 

The experiments gave Tq2le = 12.7, corresponding to fir = 8.98, and P/c = 1.8, Using C,n = 11/3 and 
C,n = 0.15/\/2, a constant value of r requires C,p = 3.45. This is somewhat higher than the value that 
Bardina recommended, which was based on his large eddy simulations of strained flows. 

Most k — t models used today do not include the C,n term. For plane shear flows the rotation term 
and the production terms have the same form, and when these terms are into a single term expressed as in 
the form of the production term the resulting combined coefficient based on the above coefficients is about 
3.0, which is very close to the value of 2.88 used in many Jk — £ models. 
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5.6 Proposal for a simple k - T model 

Compared to the e equation (5,4.1), the r equation (5.4.2) ia impressive in its simplicity. When one 
examines models for inhomogeneous turbulence, (j2/e frequently appears, suggesting that the time scale 
might be preferable to e as the second model variable. The choice should b» based on the ease with which 
the model extends to new situations. The diffusion terms required for inhomogeneous flows are particularly 
useful in evaluating various proposals. 

For example, consider what happens to the terms in the e equation near a solid boundary. The c2/q* 
term goes to infinity, but the Pe/q* term goes to sero. Consequently, a great deal of effort has been spent 
inventing near-wall patches for these terms. One does not excape these simply by changing variables, unless 
a slight modification is made. In contrast, Wilcox (1986), who uses a reciprocal time scale in place of e, 
achieves reasonable near-wall solutions, even in the viscous region, with no n«ar-wall modifications of his 
model equation. 

Two-equation models have been criticized because the length scales are anisotropic in anisotropic tur- 
bulence but the model assumes isotropy of length scale. The success that two-equation models enjoy would 
seem remarkable in the light of this objection. But suppose it is really (ime scale information that is carried 
by e, and that the anisotropy of length scales is reflected by anisotropy of R,,. 

Another clue is provided by the case of Isotropie volume change, for which the r equation is 

r = (C.o - 2) - IS^T. (5.5.1) 

Note the appearance of the strain rate term. 
It is suggested that it might be better to replace the production term in the r equation by a term 

proportional to the rms strain rate. Some additional simplicity of form is obtained by usmg the kinetic 
energy k = q212 and redefining the time scale and turbulent Reynolds number by 

f=fc/e RT = kflv (5.5.2a, 6) 

The model equation proposed is 

f = Cfo + Crnnf - CrS.S't - -Skkf. (5.5.3) 

Here 5' is the rms anisotropic strain rate 

determined from the anisotropic strain rate tensor 

St; = Sij - -SkkStj. (5.5.46) 

Note that none of these terms is ill-behaved at the wall, and so there is hope that the near-wall modifications 
can be much simpler. The constants for this model, evaluated in the same manner as those in the e equation, 
are 

C,o = 5/6 Cri)=0.n CV.s-. = 0.69. (5.5.5a, 6, c) 

Exploration of this idea is encouraged. 
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6. MODELING ANISOTROPY IN HOMOGENEOUS TURBULENCE 

6.1 Description of anisotropy 

The scale equations developed in the previous chapter are closed only for Isotropie turbulence. In 
general, the Reynolds stress tensor must also be determined by the model. The Reynolds stress anisotropy 
tensor 

k,= (6.1.1) 

is a very convenient way to describe the deviations from isotropy. This chapter deals with b^ and its 
modeling, which must be done with great care if unrealistic predictions are to be avoided. 

The anisotropy tensor has some important properties that need to be kept firmly in mind. By definition 
it is trace free, 

bt,=0. (6.1.2) 

It is often convenient to think of b,j in its principal coordinates, where only diagonal elements are non-zero. 
By (6.2.1) the sum of these principal values is zero, so only two are independent. This means that the 
anisotropy can be characterized by two independent invariants. 

ii = -6^72 111 = btlbjkbk,/3. (6.1.3a,6) 

If the turbulence is two-dimensional, meaning that one (principal-axis) velocity component  is always 
zero, by the definition (recall Greek indices are not summed) 

baa = -1/3 Raa  = 0. 6.1.4 

And, if all of the energy becomes concentrated in one component, 

baa = 2/3 Ii..., (6.1.5) 

This is called one-dimensional turbulence. Note that the one non-zero velocity component could be a funct inn 
of the other two coordinates, say u[ (12,13,'), so that the flow would resemble a honeycomb of opposing jets. 

Thus, the possible values of the two independent principal baa, say 6U and 6221 must lie within the 
triangle on Fig 6.1.1. The vertices correspond to the three possible states of one-dimensional turbulence, 
and the sides to states of two-dimensional turbulence. The Isotropie state is the origin. The diagonal lines, 
along which two principal components are the same, are states of axisymmetric turbulence. 

<-1/3,2/3> 

<-1/3,-1/3) 

in 

<2/3.-t/3> 

Figure 6.1.1 Range of possiole principal values of the anisotropy tensor 
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Note that one can either move along an axisymmetric line away from isotropy to a two-dimensional state 
(edge) or to a one-dimensional state (vertex). These limiting cases may seem extreme. However, turbulence 
near a wall is two-dimensional (the normal component vanishes), and turbulence in a strongly sheared layer 
moves remarkably far towards one-dimensionality. 

In homogeneous turbulence, the move towards a two-dimensional state is made by straining the tur- 
bulence in one direction and contracting it equally in the other two. This stretches vortex filaments in the 
direction of positive strain, aligning these filaments with the flow and thereby reducing the fluctuations in the 
direction of positive strain. This is what happens to turbulence when it is passed through an axisymmetric 
contraction. 

The move towards a one-dimensional state is achieved by straining the flow equally in two orthogonal 
directions, and contracting it in the third, as one could do in an axisymmetric diffuser (using boundary 
layer suction to prevent separation). The vortex cores are stretched out to form sheets (pancakes) and the 
limiting one-dimensional case corresponds to a honeycomb of two-dimensional vorticity. We will call this 
type of deformation axisymmetric expansion. 

An equivalent and less specific way to characterize the anisotropy is through the anisotropy \nvariant map 
introduced by Lumley. For axisymmetric turbulence we write the anisotropy tensor in principal coordinates 
as 

fa    0       0   \ 
6.j = ( 0    a      0       . (6.1.6) 

\0    0    -2a/ 

Then 
11=-3a2 111 =-2a3. (6.1.7) 

Along lines where a < 0 so that the component along the axis is more energetic than the other two (axisym- 
metric expansion), 

3/2 

III = +2( rJ (6.1.7a) 
3 

while if a > 0 so that the axis component is less energetic (axisymmetric contraction 

3/2 

III = -2 fj      . (6.1.7a, 6) 

The two-dimensional boundaries can be studied in principal coordinates, writing 

The 

hi = I   0      ^      0       • (61-8) 

11~-B{1+T)      III = ^r f61-9^' 
so that it for two-dimensional turbulence 

G=i +11 + 3111 = 0. (6.1.10) 

Using these results, the range of possible turbulence states is shown in the invariant map of Fig. (6.1.2). 
The origin is the isotropic state, the upper boundary is the locus of two-dimensional states, the two sides 
are the two types of axisymmetric states, and the upper vertex is the one-dimensional state. The anisotropy 
invariant map is a very useful way to characterize the state of turbulence in modeling, simulations, and 
experiments. 

Two tensors that can be formed from the anisotropy tensor are its square, 

^=6.*^ (6.1.11) 
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and its cube, 
'iy = l>ittbnmbmj. (6.1.12) 

The Cayley-Hamilton theorem of linear algebra says that a matrix satisfies its own characteristic equation, 
which in this instance means that 

^ + lit,-, - HI«,-, = 0 (6.1.13a) 

or alternatively 

'fj = 24****J + sbkk6i3- (6,1.136) 

Hence, 6J , and all higher powers of the tensor, are linearly dependent on the lower powers and hence do 
not contain new tensorial structure beyond that in tj , 6,,, and l,j. As we shall see, this is very important 
in turbulence modeling. Readers not familiar with this important theorem may find it instructive to verify 
(6.3.13b) by writing fciy in its principal coordinates, cnrrying out the products using the trace-free condition 
to express one of the principal values in terms of the other  wo. 

(2/27,1/3) 

one-dimensional turbulence 

*> 
(-1/108,1/12) 

axisymmetric contraction 

— axisymmetric expansion 

o    m 

Figure 6,1.2 Anisotropy invariant map 

6.2 Evolution equation for the anisotropy tensor 

Using the evolution equation for Ri, (2.7.1) and the definition of 6,^, the equation for evolution of i.j 
in homogeneous turbulence with p = p{t) can be written as 

+ (6i*n*i + ^n*.) + -^[T.y - {Dij - ^ZW0)] + 2-^kij 
g3l-./      x~'>       j-.-^/j   ■ -93' (6.2.1) 
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Here S'y ia the anisotropic strain rate tensor defined by (5.5.4). Note that only anisotropic strain produces 
Reynolds stress anisotropy, and that the right hand side is properly trace-free. The terms containing the 
mean rotation tensor tyj represent a kinematic rotation of the anisotropy tensor. When used in conjunction 
with g2 and e equations, models for the pressure-strain term Tij and the anisotropy of the dissipation tensor 
Dij must be provided. 

There is a class of turbulence models called algebraic two-equation models in which h u> assumed that 
the turbulence structure ha* reached an equilibrium state determined by a balance of the terms on the right 
hand side of (6.2.1). For example, the stanlard k - e model uses an algebraic equation equivalent to 

with Cp — 0.09. A problem should be immediately apparent. The sudden imposition of a strong strain 
could easily produce 6i, states lying outside of the anisotropy invariant map. This is a very serious potential 
problem when such models are applied in new flows. 

Another weakenss of this model is that it assumes that the principal axes of stress and strain-rate are 
aligned. This is not true in the most important engineering flow, namely shear flow. However, the constant 
CM has been set to give the right anisotropy of the shearing stress. For example, in the homogeneous shear 
flow experiment of Tavoularls and Corrsln discussed in section (5.4), 612 = —0.149 is predicted by (6.2.2), in 
excellent agreement with the measurements. However, the model predicts 611 = 0, whereas the experiments 
show 611 = 0.196, so the normal stresses are badly in error. However, they do not play a significant role in 
determining the mean velocity field, and so this error usually of little consequence. 

Algebraic models assume that the turbulence structure responds instantly to changes in the Imposed 
mean strain. This is reasonable for computing the slow evolution of mean fields, but not satisfactory if the 
strain rates are large, i.e. if S'q2/: 3> 0, where S* is the rms anisotropic strain rate. And algebraic models 
predict instant restoration of isotropy after the removal of an applied mean strain-rate. Hence, if one wants 
to have realistic predictions of the Reynolds stresses in these cases, a model of the i^y evolution equation be 
solved in parallel with the q* and e equations. 

In the balance of this chapter we review the formal methods that have been applied in attempts to 
develop rational models to close the bi, evolution equation. Then, at the end we will present a much simpler 
model that achieves some of the objectives of the more complicated models at much less expense. This new 
model might be useful for engineering analysis. 

6.3 Decomposition of the pressure-strain term 

The Poisson equation for the fluctuation pressure (2.6.1) has two terms on the right that act as sources 
for pressure fluctuations. The source Involving the mean velocity gradients will change instantly when the 
gradients change, resulting in an instant change in the fluctuating pressure field and hence an instant change 
in the pressure-strain term T,y. The source involving only the turbulence will change only as the turbulence 
adjustes to its new consitions. This suggests that the pressure fluctuations be split into rapid and slow parts. 

where the rapid term is the solution of 

and the slow term is the solution of 

p' = p(')+p(2) (6.3.la) 

V'^-iuy.ifA.y (6.3.16) 
P 

-p^,.i=-2u'i,iu'i,i+2n'.,iu
l
ilj. (6.3.1c) 

The resulting contributions to the pressure-strain term (2.7.5) will be denoted by IT.   and TL , respectively. 
Eqn. (3.6.1b) is linear and has constant coefficients in homogeneous turbulence, and so can be solved 

by Fourier methods. We follow the approach of Chapter 3, and write 
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k k 

The time-dependence of the coefficients is not explicitly expressed because we are solving the Poisson equation 
at one instant of time. The solution of (6.3.1b) is then 

i/i(k) =-2{W|f Mk). (6-3.3) 

Multiplying the pressure  fluctuation series hy the the velocity gradient series,  using the conjugate 
symmetry properties of the Fourier modes,  averaging over the box of Fig.    3.3.1,  then taking the limit 
as done in section 3.3, one finds 

1- 
-pl'lu;„, =2f/,„:,M.J,„ (6.3.4) 
P 

where 
A/<JM = |^fi,(k)A. (6.3.5) 

The rapid pressure-strain term is the sum of two such terms, 

Tlt) = 2Up,j(Mii„ + M„t.i). (0.3.6) 

Modeling of the rapid pressure strain term therefore becomes a task of modeling A/.j,,,,, which we address 
in the next section. 

6.4 Modeling the Miy,,,, tensor 

The Mijpq tensor has been modeled in various ways, all relatively simple, usually with one constant 
being adjusted to fit data for the predictions of a selection of flows. Here we introduce a very different 
approach; we arge that the anisotropy model, when applied in circumstances for which rapid distortion 
theory would apply, should give results consistent with RDT. The RDT form of the model equation includes 
only the rapid pressure strain term, the production term, and the mean rotation term in (6.2.1), exactly 
the same terms used in RDT theory. The solution above for the rapid pressure field is exactly the same as 
used in RDT. Therefore, in principle it should be possible to determine all of the coefficients in the rapid 
pressure strain model (i.e. in Mijpq] so as to make the anisotropy predicted by the model equation under 
RDT approximations exactly the same as that predicted by RDT theory, for an arbitrary rapid deformation. 

Following Shih and Lumley (1985), we begin by writing the general expression for a tensor A/iy,,,, = 
Mijw/q2 that is assumed to be a function of the tensor i.y, with the symmetries in indices required by the 
definition. This is 

M'ii>'i = CI'MM + C2(6ivSjq + S,q8lf,] + CiSijbpq + C^d.-y + Cr,^,,^,, + S^b)p + 6,,^,,, + (5,,,6„,) 

+CoM;;, + CVM.* + c8(My, + My,, + Ml, + Mip) + Cofc.yA,,,, + dofM« + M») 

+CuM?, + C^b^l + C,3(M|, + Ml, + M?, + M*) + Cnkfrf,,, + ^(fe?,^, + ^„fc?,,).   (6.4.1) 
Because of the Cayley-Hamilton theorem, higher powers of (v, are not required. The coefficients Cj - C^ 
may be function of the invariants II and III, and of other scalars, such as R-p- 

The continuity (2.3.4) equation requires A/.y,, = 0.   When this condition is applied to (6.4.1), an 

must vanish. This produces three equations. 
equation containing iSy,, 6y,, and b^ is obtained. Since these are independent tensors, the coefficient of each 

Cj + 4C2 + blkCa + -blk(Cu + Cn + 2Cn) = 0 (6.4.2a) 

C3 + C4 + 5CS + -hlk(On + Ci2 + 40,3) + r^*(Ci4 + C15) = 0 (6.4.26) 
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C« + CT + 5Cg + C» + Cm + 2blk{Ci* + SCis) = 0- (6.4.2c) 

FVom iti definition, Mi,?, = Rij, to Miipq = hij + S^ji. In the same way, this condition gives three 
additional constraints, 

3C, + 2Ca + hlkCt + \^Cn = i (6.4.3a) 

3C4 + 4C5 + ^(C,, + 2C,3) + -blkClh = 1 (6.4.36) 

3C7 + 40» + 2C,o + 6L(cu + C16) ~ 0. (6.4.3c) 

These six conditions reduce the number of undetermined coefficients to nine, and give 

c' = Ä+ 6-(lC8 + \c>+ hc")+ '"&"+ &" - ic'3) 
f(^)3(^CM + ^Cl5) (6.4.4a) 

Cs = -^+62*(-5C8" ^Co - idCio)+blkviöCn ~ TQCl7 "" IS0'3) 

+ (^)3(~CM-1C16) (6.4.46) 

Cs = -i - yC5 + blk (-icu - ic12 - jC,,) + 6L (-1^4 " ^.5) (6.4.4c) 

C4 = j - ^C5 + ^fc (-ic„ - jC,,) + 62, (-^16) (6.4.4d) 

Ce = - yC, - C9 - ic.o + 6L(-^u - ^C,5) (6.4.4.) 

C7 = "iC8" 5Cl0 + 6** (~5Cu - iCl6) (6-4-4/' 

Once the coefficients are evaluated, 7^ can be determined. The result, written in terms of the 
aniaotropic strat'n rate tensor (5.5.4) and the rotation tensor, is 

^ = 2(C1 + C2)S;,. + (C3 + Ct + 2C6) ^6t, + S^fc,. - ls'nmbmjt^ 

+ (Ce + C7 + 2C8) (5X + 5^6?.. - jS^t^^,) + 2(C9 + C^)«;, (6.,6,p - -b^ + 2C105;,6,p61J 

+ (Cu + Cla + 20,3)5;, ^fcV + 6^ - ^„«0) + 2^3«;,^« + 20,35;/^ ^ - i^„%) 

+2(CU + C1B)5^ (6?p6,% - jOV«) + 2C
I^P',^(

6
?, - J*n„%) 

+(C3 - C4)(n)kii)ky + n*,6fcj) + (c6 - c7)(nt.(.2, + nkibl) + (c - cl2)np<l(biqb2
PJ + b^).   (6.4.5) 

Aea/ua&tiity has been of much concern in modeling the pressure-strain term and other terms in the 
6,, equation. The principal values taa can not be less than -1/3, and any model that would carry a 
principal value below this amount (i.e. outside the bounds of the invariant map) then produces unrealizable 
turbulence (nonsense). Truncated approximations to the series above have this danger, although the model 
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just described, with the infinite set of coefficients, would be realizable because RDT solutions are realizable. 
In order to guarantee realizabilty one can enforce certain conditions. There are various ways to develop 
these conditions. Shih and Lumley (1985) get them by requiring that the Tau terms must not drive b„a out 
of bounds. This requires 

Up,i Maj,,a =0 when    baa = -l/3 (6.4.6) 

which produces three additional constraints, 

C, + C2-^(C3 + C4 + 2C5) + ^(C6+C7 + 2C8 + C9+C10)-^(CU + C12 + 2C13)+^(CM + C16) = 0 (6.4.7a) 

Ci - -Cio + gC13 = 0 (6.4.76) 

C8 - -On + -Clb = 0. (6.4.7c) 

We believe it is preferable to impose the rea.izability conditions directly on the modeled tensor M.y,,,,. When 
the velocity component u'a is everywhere zero then üa = 0 and consequently Majpq = 0. In the principal 
coordinates of 6,j this requires 

A/iiii=0 M^j - Mim = 0 Wi2i2 = 0       when    6u = -l/3 (6.4.8a, 6, c) 

Using the fact that 6^ = -1/9 + b^k/2 on the two-dimensional line, (6.4.8a-c) give 

C, + 2C2 - ^(Cj + C4 + 4C5) + i(C6 + C7 + 4C8 + C9 + 2C10)-l{C11+ 0,2+40,3)+^(Cl4 + 2C16) = 0 

(6.4.9a) 
l-C3 + i(Cfl - C9) - ~(Cn - C12) + icl4 = 0 (6.4.96) 

gCrs+i(O8-C10) + icl5 = 0 (6.4.9c) 

c2 - ic'5+H+l^h - TSC>°+(2? - lb")c"+(-i+i^h*=a   t6-4-^ 
When equations (6.4.4) are used to express the lower coefficients, (6.4.9d) is -1/2 (6.4.9a), and so only three 
independent conditions are obtained, 

+ (— + |*l*) C» + JäiiltfCu +(J-1- 1*1* + ^(^)2)CJS = 0 (6.4.10a) 

4 " TC6" Ti0* " 9C9 ~ ^Cl0 -{h + Tsblk)Cn + (^ ~ ^)C'2 

-lb"c"+ {i - l^)c"+(i - ^-)Cl5 = 0 (6-4106) 

^5 + ^(08-C,o)+ ^0,6 = 0 (6.4.10c) 

When these are satisfied, the Shih-Lumley conditions will also be satisfied. It is important to realize that 
these realizability constraints apply only when the turbulence is two-dimensional, i.e. only on the line G = 0 
that forms the top boundary of the invariant map. 

The equations above suggest that the coefficients will depend on the invariants and not simply be 
constants. We might expand each coefficient as a power series in the invariants, 

Cn = Ci0» + blkcW + blkcW + {hlk)'cW + bibles + (blrfC^ + ... (6.4.U) 
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We see that the first approximations to the isotropic coefficients Ci and Cj are already known, and the first 
approximations to the linear coefficients C3-C5 are determined by the first approximation to C5. 

Most turbulence models presently in use include only the terms in Mijpq through C5 (the linear terms), 
employing constant values for the coefficients. But with CQ-CU, = 0 no single value of C5 can satisfy all 
three realiiability conditions (6.4.10), so these linear models do not satisfy realizability. 

The simplest set of coefficients satisfying realiiability is obtained by truncating Af,,,,, to 0(b2) and 
assuming all coefficients are constants. The truncation gives 

Cn = Ci2 = 0,3 = CM = Ci6 = 0. (6.4.12a) 

FVom (6.4.4a,b), the coefficients Ci and C? will be constants only if Cg = 0 and Cm = -3C9. Then, the 
realiiability conditions give 

Cx = 2/15 Cj = -1/30 C3 = 1/30 C« = 7/15 

C6 = -1/10 C7 = 2/10 C9 = l/10 C1o = -3/10 (6.4.126) 

These are the coefficients determined in a slightly different manner by Shih and Lumley (1986). Under the 
rapid distortion approximations, the time-series solution of the model equations resulting from (6.4.12) match 
RDT of isotropic turbulence only to O(l). The model also predicts that anisotropic turbulence subjected to 
pure rotation would undergo anisotropy changes, in excess of those caused by the kinematic rotation terms, 
of O(t), whereas RDT indicates that this excess change must be an even power series in t (see section 4.3) 
and hence should not appear until 0(t2). It would seem desirable to obtain a better match to RDT. 

Under rapid pure rotation of anisotropic turbulence, (6.4.5) will produce an O(f) change in bi, in excess 

of that produced by the kinematic rotation terms unless (C3    - C[   ) = 0. This condition gives 

Cin) = -2/7 Cf' = C[0) = 5/7. (6.4.13) 

With these values, the RDT-equivalent model predicitions also agrees with RDT to 0(() for all irrotational 
strains (Reynolds 1983). Le Penven and Gence (1983) carried the analysis to one additional order in f for the 
case of irrotational strain at a constant strain rate, and found that the coefficients could indeed be matched 
to 0(t2). Hence, it seems clear that (6.4.13) gives the rational choices for the first approximations to the 
linear coefficients. However, with C5 = -2/7 the realiiability conditions can not be satisfied by a truncation 
of A/ijp, to 0(b2), and one must include higher-order terms to effect realiiability. 

It seems clear that continued matching with RDT would determine all of the coefficients, and since 
RDT predicts realiiable turbulence the resulting model would guarantee realiiability. The RDT required for 
a complete matching must be sufficiently general to allow all coefficients to be determined. The arbitrary 
irrotational strain analysis given in section (4.5) is not sufficient because there the principal axes of 5^ were 
fixed and hence the principal axes of 5^ and 6^ always remained aligned. An RDT for of isotropic turbulence 
with arbitrary initial rotation rate and arbitrary strain rate history is required (see section 4.6). It should be 
possible to select the constants in the coefficient expansions (4.6.10) to match RDT to any arbitrary order in 
a time-series solution of the RDT-approximate model equations, and then to use the realiiability conditions 
to truncate the expansions, maintaining full realiiability. Thus, in principal the rapid pressure strain model 
should be determined completely by RDT analysis, with no adjustable constants matched to experiments. 
We are attempting to complete this task. 

Another approach that may be fruitful is to use RDT for initially axisymmetric two-dimensional tur- 
bulence, in conjunction with the realiiability constraints, to develop expressions for the coefficients that 
must hold along the two-dimensional line G = 0. The results of section 4.7 should be useful in this regard. 
These coefficients might then be expanded in power series in G in order to determine appropriate values 
for three-dimensional turbulence, perhaps by matching to RDT. Many interesting analyses of this nature 
remain to be done in turbulence modeling. 

6.5 Modeling the slow terms 

The negative of the slow pressure-strain term and the dissipation ansiotropy term are modeled together 
in (6.2.1) as 

T^ - (A, - UfcfcS.y/S) = -r^-. (6.5.1) 
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Assuming that it «is possible to model faj in terms of 6,,, a premise that is not supported very well by direct 
numerical simulations, the most general form must be 

iii = (* + 2)kJ+ß{l>l + lWii) (6.5.2) 

where the coefficients a and ß could be functions of the invariants II and III and possibly of other scalar», such 
as RT- Under these assumptions, one can in principle evaluate the coefficients by reference to experiments 
and simulations on the return to iiotropy following removal of mean strain rate. In this case (6.2.1) reduces 
to 

hi = -4(^ - 2W = -4rK; + ßtäi - k/cW]- (6-5-3) 

If the anisotropy is weak, a controls the return and must be positive if there is to be a return. 

Using (6.5.3), the evolution of the state point on the invariant map is described by the two equations 

dn__e 
dt   "     q 
— = -3(2aII-3^3111) (6.5.4) 

f™      _JL(3ani+V) (6.5.5) 
at q' i 

so that the trajectory on the map is described by 

d\\        2a\\ - 30111 

dill      3am + 2/3II2 ' 
(6.5.6) 

Therefore, if the underlying premise of the model is correct, the trajectories must be unique and the ratio 
7(II,III) = a/ß can be determined by the local trajectory. 

There have not been many experiments on the return to isotropy. Those that do exist often show very 
strange behavior. Direct numerical simulations of Lee and Reynolds (1985) using the Rogallo code in a 
1283 mesh attempted to address thee questions in the hope of evaluating the parameters. Turbulence that 
had been strained by axisymmetric contraction relaxed smoothly to isotropy along the axisymmetric line as 
expected. But turbulence that had been strained by axisymmetric expansion showed very strange behavior, 
in some cases moving further away from isotropy before starting the return. Turbulence strained by complex 
combinations that produced states near the middle of the anisotropy map did not show convincingly unique 
trajectories. A sample of the trajectories following removal of plane strain are shown in Fig. 6.5.1. The 
points to the left have been strained most rapidly, and the initial states are preducted very well by RDT. 
The lowermost points are in general agreement with the one experiment on the relaxation from plane strain 
by Tucker and A. Reynolds (1968). Note that one point begins its "return" by going substantially far in the 
wrong direction. It seems impossible to incorporate this wierd behavior within the structure of (6.5.2). 
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Figure 6.5.1 TVajectories of the return to isotropy from plane strain (simulations) 

The simulations cast doubt on the basic idea of modeling these terms using only the 6^ tensor. Bu . 
the simulations did show that the return of the small-scales to isotropy, as reflected by the anisotropy in the 
vorticity and disssipation tensors, was quite well behaved and easily modeled. This suggests some directions 
for future modeling research. 

These simulations, as well of those of Rogallo for homogeneous shear flow, suggest very strongly that 

$ij -» 26,-j 1-0. (6.5.7). 

This means that there should be no linear return to isotropy. Careful examination of the very nearly isotropic 
data of Comte-Bellot and Corrsin (1966) seems to support this behavior. 

Choi (1983) perfomed experiments on the return to isotropy from the right side of the invariant map, 
and did seem to observe more consistent behavior. A fit to his data developed by the Cornell group and 
reported by Shih and Lumley (1986) is 

a=12.44(9G)2(l-9G)3/4 ß = 0. (6.5.8) 

The G factors provide a sort of realiiability, and there is no linear return to isotropy. 
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A criticism that mlglit be raised about this model is that it does not allow two-dimensional turbulence to 
remain two-dimensiciia", relaxing to an axisymmetric state. It is possible to construct a model that does by 
using the realizabih'y c ridition. When u'a = 0 everywhere, then Dau = 0, Ta„ = 0, and hence i^,,,, = 26U,I, 
which will sustain /'.„ 1/3. Thus, the realizability condition gives 

3/3 (H") when    G = 0. (6.5.9) 

Since this constraint only need be true for G = 0, we can add functions of (7 without destroying realizability. 
A linear term suffices, with its coefficient chosen to remove the linear return to isolropy when O = 1/9 and 
II = 0 and to make ß vanish for small anisotropy. 

+ 211-3(7 )A. (6.5.10a) 

ß = ßt){l-9a). (6.5.106) 

The model is then 

'"-? 1 + 211- SOW,, + Ä.(l - 9G) fe + jIKy (6.5.11) 

With this model, for nearly Isotropie turbulence (6.5.4) becomes 

a « -ß0n (6.5.12) 

while for small anisotropy (6.5.8) gives 

aw 12.44(-9n)3/4. (6.5.13) 

Matching at — II = 0.(15 suggests ßo « 10. This modified model satisfies realizability, restores axisymmetry 
in two-dimensional turbulence, displays no linear return to isotroy, and gives return rates, of the right order 
of magnitude. 

However, one might suspect that the slightest little three-dimensionality would explode the turbulence 
into a three-dimensional field, so perhaps it is unreasonable to insist on maintaining two-dimensionality in 
the model. Undecided issues likes this provide fruitful grounds for new research, and we are now exploring 
questions like these using direct turbulence simulation. 
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0.6 A simple anisotropy model 

The gap L tween the eddy-viscosity models used in the simplest k - e models and those discussed above 
is immense. There is a need for a much simpler model that would protect engineering calculations from 
the dangers of unrealizable turbulence, provide some indications of the trends in anisotropy for unusual 
flow situations, and handle dynamic changes on roughly the right time scale, but without such calculational 
complexity. The beginnings of such an idea are ;    jented here. 

We start with the idea that a large positive strain rate in one direction tends to stretch vortex filaments 
in that direction, aligning them with the flow, thereby intensifying the perpendicular fluctuation components 
and reducing those along the axis. In the limit of very strong strain rate, the energy in the axial fluctuations 
axial will approach zero. The anisotropy model must prevent negative values. And, we know that only the 
it anisotropic component of strain produces anisotropy in the turbulence. A simple algebraic model with 
this character is 

-5* T 
b,, =  ^ . (6.6.1) 
"     A„ + ASS'T v        ' 

In order for realiiability to be maintained, baa should approach -1/3 as 5*,, —> oo, for any combinations of 
other S' . This requires that the coefficient As depend on the type of strain. 

In the principal coordinates of $'■, we take 5,*, as having a large positive value T, and write the 
strain-rate tensor as 

/l        0 0    \ 
2 

.0 0 
S,*, = r I 0     -^        0        . (6.6.2) 

Note that a = 0 gives axisymmetrk contraction, a = 1 gives plane strain, and a = 3 gives axisymmetric 
expansion. Then 

5. = rv/1 + ii±£)! + ü^l!.rv/^Z (e.e.3) 

For large positive T our model must yield 

1 Tr 
3 ASS'T 

(6.6.4) 

and this requires that 

*S^~. (6.6.5) 

We need a way to represent a for an arbitrary orientation of the coordinates. The structure of Sj'  is 
characterized by 

which for (6.6.2) is 

W =    "  '~i (6.6.6) 
{S'f 

W=    ^-**)/*. (6.6.7) 
|(3 + a2)^]3/2 l ' 

W ranges from -l/\/6 for axisymmetric expansion to l/\/6 for axisymmetric contraction. Plane strain and 
shear flow correspond to W = 0. Using (6.6.5) to express a in terms of i4s, and then in turn expressing W 
in terms of As, we find 

W = f-^- . (6.6.8) 

This allows us to determine As from a known W. The relationship between them is shown in Fig. 6.6.1. 
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Figure 6.6,1 Variation of the model parameter with strain type 

The constant Ao should be chosen to produce the proper level of shear stress in shear flow, for that 
is the most important engineering flow. Shear flow can be represented as a combination of rotation and 
irrotationai strain. Denoting ^1,3= V, 

Sh 

0     i-    0> 

c.    0   0 
0    0    Oj 

n.; 
0    1   0^ 

-E    0    0 
0'    0    0, 

(6.6.9a, 6) 

Hence, for shear flow W = 0, As = 3/v/2, and 5 = r/\/2- With these values, Aa = 23 produces 6,2 = -0.15 
at TT = 12.7, corresponding to the homogeneous shear flow experiments of Tavoularis and Corrsin. 

We now have an anisotropy model that is always realizable for all types of strain, and has the right 
general trend of 6,j with Sij, but assumes that a state of structural equilibrium has been attained. In order 
to handle transients, we propose an evolution equation for 6,; that would give (6.6.1) as its equilibrium 
solution, 

bX] = -C, [(A0 + AsS'TJbij + S.^rj/r (6.6.10) 

By choosing Cj = 4/15, the model will agree with the initial phase of rapid distortion of Isotropie turbulence, 
and the rate of return t J isotropy is of the right general magnitude for linear approximations. Note that the 
model correctly predicts no change in the ansiotropy of Isotropie turbulence under pure rotation. 

For many engineering problems the main objective of the turbulence model is to reveal important trends 
This simple anisotropy model would make the important stresses change in the right general way, without 
becoming unrealizable, and therefore it should be an attractive alternative for use in simple two-equation 
turbulence models. Preliminary studies by students in the author's turbulence class support this conjecture. 
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7. NUMERICAL SIMULATIONS OF TUBULENCE 

7.1 Introduction 

Over the past decade, two important types of numerical simulations have become important. The 
earlier work concen'.rated on large eddy itmu/atiom (LES), in which simple models are used for the small- 
scale turbulence and a realitation of th ■ large-scale turbulence is computed. The underlying idea is that the 
structure of large eddies differ greatly fiom flow to flow (which is why universal models are elusive), whereas 
the small eddies are more universal ami therefore easier to model. Large eddy simulations have provided 
important information for turbulence modeling, and there is now great interest in the development of large 
eddy simulations as a tool for engineering analysis. A prominent program in this direction exists in France 
at the EDF. 

It was argued that, since the «atio of the largest to the smallest scales of turbulence varies as Rj. 
(see 3.2.4), it would never be practical to do a significant simulation of all the important turbulent scales. 
However, vali;i direct simulations of turbulent flows at RT of the order of 100-300 have become possible. This 
is the range of turbulence Reynolc numbers in turbulent shear flows with Reynolds numbers, based on the 
layer thickness and the driving mea i elocity difference, of about 1000, and a number of direct simulations of 
channel flows and boundary layer flows at these low Reynolds numbers have now been attained. These direct 
simulations provide an important new tool for studying turbulence, particularly because they yield essentally 
any data that one might desire. Already they have contributed important new insight into turbulent structure 
and have aided advances in turbulence modeling, as well as new understanding of transition physics. 

In this chapter we will review the fundamentals and current status of this very fast-moving area of 
research, drawing primarily from the experience of the large group working in this area at the NASA/Ames 
Research Center and Stanford University. At present this group involves about ten NASA scientists, three 
Stanford Professors, a dozen or so graduate students, and some post-doctoral scholars and other visitors, 
with the work being coordinated by the joint NASA/Stanford Center for Turbulence Research. Some of the 
exciting new things going on in this group will be outlined, with details b^ing left for the authors to report 
for themselves. 

7.2 Fundamentals of large eddy simulation 

In LES one needs a way to define the large-scale components of the fields, and filtering is usually used. 
The filtered field } is defined by 

7(x,0 = |G(x,x';A)/(x',0<iV. (7.2.1) 

Here G is a filter function, which determines exactly what fraction of the motion is defined as being large 
scale, and A is a filter parameter that implements this choice. The filter function must be normalized such 
that 

rG(x,x';A)d3x' = l (7.2.2) 
/■ 

for all x. The residual field f is then what is left over after filtering, 

/(x,f)=7(x,0+/'(*,«)• (7.2.3) 

The filtered residual field is not zero since 

7#7 TtO. (7.2.4) 

Filtering (7.2.3), 

7 = 7 + 7 (7.2.5a) 

so the filtered residual field can be expressed in terms of the singly and doubly-filtered resolved fields, 

7 = 7-7- (7.2.56) 



I v/ 

This proves very useful in modeling the residual turbulence. 
In homogeneous turbulence the filter must be of the form G{x - x'; A). Then 

/(x,0 = y"G(x-x'iA)/(x',tHV 

has the Fourier transform 
7(k,0 = Ö(*:;A)/(k,0 (7.2.6) 

where the k argument of C is the magnitude of the k vector. Several filters ahve been explored. The sharp 
cut-off fitter 

d=(c if|*-fc;i<*< (727) 
lO    otherwise 

make a clean separation of large and small scales in spectral space, but the Gibbs phenomena in the inverse 
Fourier transform make the physical-space interpretation undesirable.  Smoother behavior can be obtained 
with the Gaussian filler, 

G{x - x';A) = Ae-V'--*'^*'-*'*'*' (7.2.8) 

where 4 is a constant determined by the normalization and depends on the number of directions in which 
the filter is applied. The Fourier transform of the Gaussian filter is also Gaussian, 

6(klA) = Be-k'£-''2i. (7.2.9) 

Filtering is more of a problem for inhomogeneous flows . The most satisfying approach is to use 
an appropriate set of expansion functions in the inhomogeneous directions and then to define the filtered 
value as the n-term approximation. However, most work has instead used finite-difference methods in the 
inhomogeneous directions with the Gaussian filter in the homogeneous directions, and taken whatever implicit 
filtering is provided by the difference scheme. This is not very satisfying because it leaves the computed field 
ill defined, and does not provide a systematic way for estimation of the energy content in the residual field. 
This is one of the unsatisfying loose ends in LES that needs to be cleaned up by some good research. 

The evolution equations for the filtred field are derived by filtering the Navier-Stoles equations, so it is 
important that the filtering definition commute with differentiations with respect to both time and space. 
The Gaussian filter has this property, and so homogeneous turbulence really can be done properly with LES 
using the Gaussian filter. If p = p{t) then the filtered continuity equation is 

p + pü, =0. (7.2.10) 

Subtracting this from the full equation, 
<,i = 0 (7.2.11) 

so the residual field is divergence-free, and if p = constant the filtered field is divergence-free. Filtering 
the momentum equations, assuming ß is constant and again allowing p = p(t), the equation for the filtered 
velocity field is 

ti + (Ü7ÜJ),, = —p,. +^ü,,„ . (7.2.12) 

Representing the velocity as the sum of filtered and residual components, 

ü&i = SjlJ + Rij (7.2.13) 

where the residual stress terms are __ 
Ä,,-= ÜjuJ + ujüy + UJUJ', (7.2.14) 

In LES one needs to model A,y. Given this model, and a suitable computer, and a few little details like 
boundary and initial conditions, tingle realizations of turbulence fields can be generated. In homogeneous 
turbulence this appears to be sufficient, because volume averages over a single realization seem to provide 
good representations for ensemble averages. 
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The term ü,ü} does not need to be modeled because it can be computed directly by filtering the product 
of the filtered velocitiea. This ia eaaily done in Fourier apace, and we handle this term this way now. Our 
earlier representation of this in terms of S,ii; + £,j, where L,, was the Leonard stress, is now abandoned. 

It may be noted that we have not made any mention of numerical methods and have avoided use of 
the term sub-grid scale turbulence. We believe that it is important to cast the LES equations in a way that 
is independent of the numerical method, and would lend itself to purely theoretical analysis. However, in 
reality the filter width that is taken is related to the computational grid employed. The results depend upon 
the ratio of filter width to mesh width, and the best results are obtained when the filter width is twice the 
mesh width. 

T.S Modeling the residual streBges in large eddy simulation 

One can not afford a very complex model for the residual stresses in LES. Almost all of the work to 
date has been done with simple algebraic models, although there have been some explorations with simple 
one-equation turbulence models. 

It is useful to separate R,, into Isotropie and anisotropic parts, as is done with viscous stresses, 

% = |äW%-t-r.i. (7.3.1) 

The Isotropie term is absorbed with the filtered pressure by writing 

P* = -p + -Rkk (7.3.2) 
P        3 

and then P' replaces p/p and Tij replaces R,, in (7.2.12). 
An important element of most LES calculations is the Smagorinski model, which assumes that the 

residual Tiy is a linear function of the anisotropic strain rate imposed by the filtered field 

Tij = -2ITS,, (7.3.3) 

where i/y is an eddy viscosity of the residual field. If it is assumed that the length scale of the dominant 
residual eddies is the filter width, and that the time scale is that set by the strain rate of the filtered field, 
then 

l/T = (CSA)2\ßwJLn- (7.3.4) 

The coeffient in this model can in principle be evaluated by performing direct numerical simulations on a fine 
mesh (say 1283), then filtering this data to a coarse mesh (say 83) to define the filtered and residual fields, 
and then comparing the model with the residual field from the coarse filtering. Clark et. al. (1979) were 
the first to emply this technique, which is now known as a Clark test. For Isotropie turbulence the results 
are moderately encouraging, and do not show much dependence on Reynolds number, a value of about 0.12 
being typical. However, when this test is applied in strained and sheared flows, essentially no correlation 
is found between the model and the data. The model simply is inadequate under these more interesting 
circumstances. 

An important advance in residual stress modeling was made by Bardina (1985), who first proposed to 
model 

Ä.-^Cßfc-ilj-S.-Sy). (7.3.S) 

The basic idea was to characterise the stresses of the residual scales as being similar to that of the smallest 
resolvable motions, so Bardina called this the scale stmtlarity model. By itself it was not adequate either, 
because it does not dissipate sufficient energy. But it does provide energy transfer from high to low wavenum- 
bers, and effect that is missing in the Smagorinsky model. When used in combination with the Smagorinsky 
model (the Bardina mixed model) remarkably good results are obtained in the Clark tests, with the same 
values of the constant yielding correlations between predicted and actual stresses of the order of 70% for 
shear flow, irrotational strain, and unstrained flow!. 



The value of the constant Cg can actually be deduced from a simple theoretical argument.   If one 
transform to new coordinates moving linearly with respect to the original ones, 

x'=Xi-Cit t' = t u' = Ui + Ci (7.3.60,(1) 

the equations of motion of course do not change because they are invariant under such (Galelean) trans- 
formations. However, individial terms in the equations do change when transformed. For the filtering 
operation, 

ür
j=üi+ci              u*;=u| (7.3.7a, 6, c) 

so that Rij transforms to 

Ri, = u'iU"; + ll'Xy + U-y; + CiU'y + CjU-'i = R'j + cy. + cy«;. (7.3.8) 

The terms modeling iJ,j should transform in the same way; the Smagorinsky model is invariant under the 
transformation, and hence can not possibly represent all of Rij. The added terms of the Bardina model 
(7.3.5) transform to 

Rii = Co [IFöFj - S7^, + C^IFJ - ü7,) + c,(S% - ü7,)]. (7.3.9) 

Using (7.2.3) and (7.3.7b), this becomes 

R,] = R;i + CD(ci'^+cX). (7.3.10) 

Comparing (7.3.8) and (7.3.10), it is evident that CB = 1. Bardina was unaware of this result at the time 
he did his numerical work, on the basis of which he recommended a value of 1.05! 

In recent work yet to be published, Piomelli has been reexamining LGS residual modeling using the 
recent direct simulation of channel flow as the basis for Clark tests, also carrying out LES simulations with 
various models. This work has shed some new light on LES modeling, which can be summarized as follows. 
In coarse mesh calculations (say 163) no real difference is observed between using just the Smagorinsky 
model and the Bardina mixed model, and the results in general reflect the coarseness of the grid. However, 
at 643 calculations there are important differences. The calculations are filtering has been in planes parallel 
to the wall only, because as yet we do not really have any good way to do explicit filtering in directions of 
in homogeneity. Piomelli finds that the choice of filter function is important in determining the performance 
of the residual turbulence model. The filter makes its appearance in the calculations when the term u^üy is 
calculated by filtering the product of the computed filtered components. If the Gaussian filter is used with 
the Bardina mixed model, very good results are obtained. If the Gaussian filter is used with the Smagorinsky 
model, very poor results are obtained. But if the Smagorinski model is used with the sharp cut-off filter, fair 
results are obtained. 

The inference from this work is that the sharp cut-off filter defines a clear length scale for the residual 
turbulence, whereas the Gaussian filter spreads the residual scales out over a broader range. The Bardina 
model accounts for the different scales in the residual field generated by the Gaussian filter. On the other 
hand, only one length scale is carried by the Smagorinsky model, and therefore this model can not account 
for all the scales filtered by the Gaussian filter. 

One might argue that the turbulence time scale in the Smagorinsky viscosity should be a scale appro- 
priate to the residual field. In Isotropie turbulence the strain rate of the resolved field sets this scale, but in 
inhomogeneous flows with strong mean strain rate it may be better to extract the time scale from the high 
wavenumber end of the resolved field, as in the Bardina model. One possible approach is to use the velocity 
scale in this range,   

"T = C&y/(üi,-uk)(ük-uk]. (7.3.11) 

Another approach would be to use the strain rate. 

^ = d A2\/Wn - Smn){Snm -Snm). (7.3.12) 



In LES one probably does not want to attempt to resolve the wall region of boundary layers, and so 
some appropriate wall conditions are needed. For high Reynolds numbers, it is through this condition that 
the viscosity will enter the problem. The main thrust of Piomelli's work has been to assess various proposals 
for these conditions. At this writing about all we can say is that nothing that we or anyone else has suggested 
shows up very will in Clark tests against the direct simulations of channel flow. However, we are hopeful 
that a satisfactory working model for the residual wall stress will be found, and this probably will draw 
upon new knowledge about the structure of the wall region that is currently being extracted from the direct 
simulations. 

7.4 Insights from direct simulations of homogeneous turbulence 

Boundary conditions are a problem in turbulence simulations. The problem is avoided in homogeneous 
turbulence by use of periodic boundary conditions. The resulting turbulence is somewhat artificial in that 
the motion on opposite sides of the computational domain is fully correlated, which of course would not be 
the case in a real turbulence field. One must select a computational domain large enough that the statistical 
correlations at separations of half the computational domain are small, and when this is done the statistical 
results up to this separation seem to be quite like those of real turbulence. 

A large number of homogeneous turbulence simulations have been carried out by the Ames/Stanford 
group, almost all using the Rogallo code. This program uses the coordinate transformation (4.2.4), and as 
a result achieves remarkable robustness in runs with very strong deformation. For a recent description of 
the code sec Lee and Reynolds (1985). Simulations now include homogeneous shear flow at a variety of 
shear rates, many cases including scalar transport, a variety of irrotational strain flows, return to isotropy 
following various strains, some rotation cas's. Special codes have handled a funny type of homogeneous 
compressible shear flow and some flow compression cases. Meshes ranging from 643 to 2563 have been used, 
although the 1283 cases are now the most abundant. 

In a direct simulation one must capture both the energy at large scales and the dissipation at small 
scales, and this limits the calculations to relatively low Reynolds numbers. One can usually tell when not 
enough small-scales have been captured by a pile-up of energy at the high wavenumebr end of the spectrum. 
The the model spectrum (3.9.4) can be used to estimate the fraction of energy left out of a calculation at 
any given RT- Typical 1283 calculations miss less than 1% of the turbulence energy at RT = 50, a typical 
range for these simulations. 

The initial turbulence field must be constructed in a divergence-free manner, and this is easily done with 
the Fourier representation. The spectrum can be shaped initially and scaled to contain the proper energy 
for a target RT- For details see Lee and Reynolds (1985). 
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Figure 7.4.1 Spectra for relaxation from plane strain 
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Figure 7.4.2 Anisotropies during relaxation from various strains 
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AH of these calculations show a remarkable amount of small-scale anisotropy. For example, Fig.7.4.1 shows 
one of Lee's spectra during relaxation from plane strain, with the different lines representing different com- 
ponents. Note that the anisotropy persists throughout the -5/3 range of the spectrum. We investigated 
this issue of small scale anisotropy by extending the measures of anisotropy discussed in Chapter 6 to the 
vorticity and dissipatin field«. The vorticity tensor is defined as 

and the vorticity ani'iotropy tensor is 

V0 = u>W (7.4.1) 

V.-, - a;2%/3 
(7.4.2) 

The dissipation anisotropy tensor is defined by 

Ay - ^^.y/3 ,        . 
d.,- — . (7.4.3) 

These two anisotropy tensors are characterised by their second and third invariants, defined the same way 
as those for the Reynolds stress anisotropy tensor fc,, (see 6.1.3). Their anisotropy invariant maps are the 
same form as those for \} explained in section 6.1. The boundary lines are the same for the 6,y and <i,y 
invariant maps, but on the vorticity invariant map the two axisymmetric side boundaries are reversed, and 
the uppermost point corresponding to one-dimensional vorticity corresponds to the two-dimensional velocity 
field. 

Fig. (7.4.2) shows the second invariants of vorticity and velocity during relaxation to isotropy from 
a variety of different strain types. The trajectories on this diagram are generally down and then to the 
left. Upon the removal of mean strain rate, the vorticity anisotropy relaxes quickly to a point, and then 
relaxes slowly, locked on to the anisotropy of the Reynolds stress!. Moreover, essentially all of the points 
showed more anisotropy of the vorticity thatn of the Reynolds stress! These are astonishing observations to 
anyone who has grown up with the idea that the small scales become isotropic quickly, compared to the slow 
relaxation of the scale anisotropy. 

It is also very interesting that the relationship between the two invariants in the lock-on phase returning 
from axisymmetric expansion is quite different than that when returning from axisymmetric contraction. 
This suggests that there may be two types of competing structures in turbulence, the noodles formed by 
axisymmetric contraction and the pancakes formed by axisymmetric expansion, and that perhaps bettor 
turbulence models could be made by treating these structures separately. 

We have mentioned that the trajectories for return to isotropy on the Reynolds stress invariant map are 
not well behaved, which casts doubt on the viability of modeling the slow pressure strain and dissipation 
anisotropy terms in terms of i.y. However, those on the vorticity map are extremely well behaved. Figure 
(7.4.3) shows these trajectories, which are well fit by the simple model 

2 

«y = -a—Vij (7'4.4) 

where a depends on both the invariants of 6,-, and »,y. The dissipation anisotropy trajectories are quite 
different, but they too are very well behaved and can be modeled quite neatly. For details see Lee and 
Reynolds (1985). 

Upon reflection, the requirement that the vorticity field be anisotropic is obvious from the Biot-Savart 
law; if the vorticity spectrum were isotropic, the Reynolds stress spectrum would be isotropic. It may be 
that explicit consideration of this anisotropy in turbulence modeling could have some advantages. We have 
been exploring some possibilities. 

In another recent study, Rogers (1986) has examined the structure of homogeneous turbulent shear 
flow. His studies reveal that hairpin vortices of the type found in wall boundary layers are also found in 
homogeneous turbulence. However, in homogeneous turbulence there are Soth 'up* and "down" hairpins, 
while in a boundary layer one sees only one kind. He also found evidence of some transverse vortices believed 
to be associated with the weak orientation of vorticity caused by mean rotation (see section 4.6). 
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Lee has extended Rogers work to (high) shear rates and Reynolds numbers comparable with the viscous 
region of turbulent boundary layers. Remarkably, he finds long longitudinal streaks that familiar objects in 
the wall region, with transverse spacings that scale on the turbulent stress and viscosity in exactly the same 
way as in wall boundary layers. This work suggests that it is the high shear rate, and not the wall, that 
produces the streaks! This would be good news for modelers, because it would mean that models based on 
homogeneous turbulence might have far more to do with boundary layer flows than one might think. 

Rogers also studied scalar transport in homogeneous shear flow at three different Prandtl numbers. 
There are three interesting situations corresponding to an (imposed) means scalar gradient in each direction. 
He calculated the scalar fields for all three cases at the same time for a set of common hydrodynamic 
simulations. A surprising result, actually seen in experiments by Tavoularis and Corrsin, is that some 
cross-gradient scalar fluxes are larger than the flux in the direction of the mean gradient!. 

Rogers used his insight about the hairpin vortex structures and the transverse vortices to explain the 
mechanism by which these cross-gradient transports can develop. He then went on to model the scalar 
flux in two ways, using his simulation data both as a guide in the modeling and as the basis for coefficient 
evaluation. The models deal with an anisotropic diffusion tensor Dij, defined by 

hi=:^f=-Diie,i (7.4.5) 

where 6' is the scalar fluctuation and ©y is a mean scalar gradient. The diffusivity tensor could be calculated 
from his measurements, and is found to be inherently non-symmetric. However, he did find that it became 
antisymmetric in a coordinate system that is aligned with the principal axes of the Reynolds stress. This 
led him to model the diffusion tensor in the form 

D,, = C^.y + Cjß.j + Cafl^. (7.4.6a, 6) 

He was able to correlate his coefficients with Reynolds and Prandtl numbers to within about 20%. 
Rogers made another model assuming that the scalar flux is aligned with the sum of the mean gradient 

terms in its own transport equation, and thereby obtained a model of comparable accuracy with only one 
free coefficient. This model is 

1 /        1 17\015V 131 \-u'-'3* 
-Cü/i.+ ^f/„)+/?.;0,J = O CD-16.lfl + —j (l + --==j (7.4.70,6) 

where r = q2/£ and RT = 1*l(ve]- This result should be of immediate use in turbulence modeling for both 
homogeneous and inhomogeneous flows. Rogers has recently checked this model against direct simulations 
of turbulent channel flow at Pr = 1 and found that it is remarkably accurate for the flux in the direction of 
the mean temperature gradient and within about 20% for the flux perpendicular to the mean temperature 
gradient. 

7.5 Direct simulations of spatially-developing flows 

Some of the most exciting work at present are the boundary layer simulations of Spalart. He is using 
a clever stretching of the coordinate system that enables him to use periodic inflow-outflow conditions in a 
growing boundary layer, and has already produced results about the structure of boundary layers in pressure 
gradients of much interest to experimentalists. 

In order to simulate more general turbulent flows, inflow and outflow conditions are needed. The outflow 
problem is simpler and we have had a reasonable solution for some time. The inflow problem is harder, but 
we have recently made some excellent progress. 

Lowery (1986) simulated the spatially-developing mixing layer, including scalar transport. He found 
that a soft convective outflow condition, 

applied to the velocity components and scalar worked quite well, with minumum upstream influence. The 
convection velocity Uc was taken as the average of the two free stream speeds. At the inlet he forced the 
flow with a combination of fundamental and two subharmonics of a dominant instability of the inlet layer 
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(tanh profile), because the layer was forced, it responded like a forced layer, with parings occuring cyclicly 
at froien locations. And, the layer grows not linearly, as do natural layers, but by leaps and bounds, as do 
forced mixing layers in the laboratory. 

It has been asked if the mixing layer is absolutely unstable, in which case if the forcing is stopped after 
large disturbances have developed downstream the layer should continue to remain. When Lowery terminated 
forcing, the initial region of the layer relaminarized, suggesting that the instability was convective, but midway 
down the flow the turbulence never went away, and by the exit the flow was quite turbulent. His calculation 
did not include the splitter plate, which undoubtedly plays a role in promoting absolute instability, so the 
matter is not really resolved. Lowery also studied the growth of three-dimensional disturbances in the layer, 
finding that they grew to scales and structures characteristic of the braid region of the mixing layer. 

Ongoing extensions of our mixing layer simulation work by Sandham involve the use of random jitter 
of the forcing to simulate more natural turbulent inflow condition. This produces the linear growth seen 
in natural experimental layers, at growth rates in excellent agreement with experiemnts. The resulting 
statistical quantitiers, including the scalar pdf, are much more like those measured for natural layers. It 
now seems that this will be quite an acceptable method for generating relativelty simple yet effective inflow 
conditons for direct numerical simulations of turbulence. 

Current work is concentrating on extensions to compressible mixing layers, the goal being to use these 
direct simulations as the basis for building better turbulence models for supersonic flows, including combus- 
tion, both for use in LES and in simpler turbulence models. There is a growing group at Ames, involving 
Rogers, Moser and others, beginning to work very seriously on turbulent combustion simulations. It seems 
safe to forecast that a decade from now the capabilities for know much more about the modeling and simula- 
tion of these and flows of technical interest will be considerably advanced, and students who have mastered 
these notes should be ready to begin the exciting work ahead in this area. 
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